数量認識
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/27 07:26 UTC 版)
ゼロは偶数であると信じる大人であっても、それを偶数と考えることに必ずしも馴染んでいるわけではない。その馴染の無さは、 反応時間テストで、それらの低減を計測できる程十分である。数量認識の分野における開拓者の一人であるStanislas Dehaeneは、1990年代初期にそのような一連の実験を行った。ある命数あるいは数詞がモニター上で被験者に表示される。被験者はその数字が偶数か奇数かを決定し、それに応じて右または左のボタンを押す。左右のボタンと偶数・奇数の対応は、実験ごとに変わる。コンピューターは被験者が二つのボタンの一つを押すまでにその対象を表示している時間を記録する。この結果、0は他の偶数よりも処理時間が遅いことが示された。この実験のあるバリエーションでは、60ミリ秒ほど、あるいは平均反応時間の約10%の--小さな違いだが特徴的である--遅れが見られた。 Dehaene の実験は、特に0について研究するためにデザインされていたわけではなく、むしろ、いかにして偶奇性の情報が処理され抽出されるのかを説明するための、複数の競合するモデルを比較するためのものであった。もっとも明確なモデルである精神計算仮説は、0に対する反応は早くなるであろうことを示唆していた。0は小さな数であり、0 × 2 = 0を計算することは容易だからである。しかし、この実験結果は何かまったく違うことが発生していたことを示唆している。どうやら、偶奇性の情報は、素数やら2の冪のような関連する数の性質のクラスターとともに記憶から呼び出されているらしい。2の冪の数列と、偶数の列2, 4, 6, 8, ...は両方共、それらのメンバーが偶数の原型であるような、よく目立つ精神的カテゴリーである。ゼロはこれらのリストのどちらにも属していない、だから反応が遅いのである。 繰り返された実験では、命数形式での数の名前、文字による表示、および鏡文字などを使い、多様な年齢、国籍、言語などを持つ被験者に対してゼロでの遅れが示された。Dehaeneのグループは、ある異なる要素を見出した。それは数学の専門知識である。これらの試験の一つでは、高等師範学校の学生が二つのグループに分けられた:文学専攻と数学、物理、生物専攻である。0での遅れは「本質的に文学専攻群に見られる」。そして実際、「試験の前に、ある文学専攻の対象者は0が偶数か奇数か確信が無く、数学的定義の復習をしなければならなかった」。 馴染みに対するこの強力な依存性は、精神的計算仮説をさらに不利にする 。この結果は又、グループとして偶数と奇数が比較されるような実験においてゼロを含むことは不適切であるということを示唆している。ある研究で述べられていたように「大部分の研究者は、0が典型的な偶数ではなく、精神的な数直線の一部として研究されるべきではない、ということに同意しているようだ」
※この「数量認識」の解説は、「ゼロの偶奇性」の解説の一部です。
「数量認識」を含む「ゼロの偶奇性」の記事については、「ゼロの偶奇性」の概要を参照ください。
- 数量認識のページへのリンク