流体とは? わかりやすく解説

Weblio 辞書 > 同じ種類の言葉 > 言葉 > 状態 > 流体 > 流体の意味・解説 

りゅう‐たい〔リウ‐〕【流体】

読み方:りゅうたい

気体液体との総称外力に対して容易に形を変える性質をもつもの。流動体

「流体」に似た言葉

りゅうたい 流体 fluid


流体

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/10/03 07:00 UTC 版)

連続体力学


流体(りゅうたい、: fluid)とは、静止状態においてせん断応力が発生しない連続体の総称である[1]

一般的には液体気体であるが、液体と気体が混ざったものやこれらに微量の固体が混ざった混相流体のように特殊な流体として扱われるものもある[2]

定義

流体に共通の性質は流動性である。これは体積一定で準静的な変形には力を要しないことであり、さらに言い換えると、静止状態において接触面に平行な内部の力が発生しない(せん断応力接線応力が発生しない)となる。これより、上述の「静止状態においてせん断応力が発生しない連続体」という流体の定義が得られる。

この「流動性」という定義は熱力学的・物性的なものでなく、運動学的なものである。よって、連続体としての固体と流体の区別は、物質の形態としての固体と液体・気体の区別と厳密には一致しない。例えば、非常に急激な力を加えると水も固体のような性質を示すし、非常に緩慢な力が働いていると氷も流動する[3]ことからも、同じ状態の物質でも運動の時間・空間スケールの違いによって流体とも固体とも観ることができる(粘弾性を参照)。また、塑性を持つ固体や、分散系と呼ばれる液体・気体中に固体が分散した状態のものも流体として扱われることがある[4]

体積変化を伴う変形には力が必要だが、これは接触面に垂直な内部の力は発生してもよいからである。いかなる方向の接触面に関しても面に平行な内部の力が発生しないことから、「静止流体において内部の力は接触面に垂直でその大きさは接触面の方向によらず面積に比例すること」が導かれる[5][1]。この定理を発見者の名前からパスカルの原理と呼び、垂直な内部の力と面積の間の比例定数を圧力(あるいは静水圧[6])と呼ぶ。なお、以上のことから流体の定義を「静止状態において等方的な応力をもつ連続体」[6]とすることもできる。

連続体モデル

実在流体は互いに衝突をする離散的な分子から構成される。しかし、連続体モデルでは流体を連続であると、すなわち、密度・圧力・温度速度といった量は各点で定義され、空間に対して連続的に変化すると考える。これは、各「点」を十分に小さいが多数の分子を含む領域と考え、諸量はこの領域での平均量として定義することで実現できる。

連続体モデルは、不連続に変化する量を連続的に変化するとみなす近似である。クヌーセン数 Kn(分子の平均自由行程長と、考えている物理問題に現れる特徴的な長さスケールとの比)が1より十分小さければ(たとえば Kn < 1/5 ならば[6])、近似の精度は十分に高く、実在流体を連続体とみなしてよい。

希薄流体力学

通常のモデルの流体は多くの分子で構成される連続した物質として捉えられるが、分子数が極めて少ない場合には個々の分子運動の性質に大きく影響されるものであり希薄流体力学という分野で扱われる[7]

分類

密度の変化による分類

連続体力学の巨視的な視点において、気体と液体には定性的な違いはない。定量的な違いとして密度以外に圧縮性(圧力変化に対する密度変化の比)の大小があげられるので、

  • 非圧縮性流体 - 密度の流れに沿った時間変化がない流体[6]。圧縮性が小さい流体(液体など)のモデルとして多く用いられる。
  • 圧縮性流体 - 圧縮性が無視できない流体

という分類が考えられる。ただし、特徴的な速さが音速より小さい場合は気体も非圧縮性流体として考えてよく、液体でもその内部を伝わる音波(密度の粗密波)を議論するときには圧縮性流体として考えなければならない[1]

なお、密度が一様で一定な流れ(非圧縮性流体の一部)もバロトロピック流体の一つである。

粘性による分類

運動中の変形に対してはせん断応力が発生してもよい。準静的でない変形に対してせん断応力が発生する性質を粘性と呼ぶ。せん断速度で変形の速さを定義できるので、流体は、

  • 粘性流体 - 粘性を持つ流体
  • 非粘性流体 - 粘性を持たない(運動状態によらず常に界面に垂直な内部の力しか発生しない、つまり、圧力のみで内部の力を記述できる)流体

に区分される。

完全流体

非粘性流体を理想流体あるいは完全流体と呼んで粘性流体である実在流体と区別する。実在流体でも粘性が相対的に小さい流れの場合、粘性の影響が無視できない境界層衝撃波などの領域は比較的薄く、それ以外の領域で完全流体の流れとみなせる場合が多いので、完全流体の力学は実在流体を考察する上でも重要である[8]

なお、この完全流体・理想流体の定義は文献や分野により異なることがある。物理の分野では、粘性だけでなく熱伝導性を持たない流体を完全流体と呼ぶことがある[8][9]、また、水理学や土木工学などの分野では非粘性・非圧縮性流体を完全流体と呼ぶこともあり[10]、非粘性・非圧縮性流体を理想流体として完全流体と区別する文献[11] もある。

運動の記述

  • ある瞬間における各点の速度ベクトルに沿ってできる曲線を流線、同一点から次々と流れる複数の粒をある瞬間に結んでできる曲線を流脈線(流条線)、1粒の移動経路を継続追跡して描かれる曲線を流跡線と呼ぶ。定常な流れでは三者は同一となるが、非定常な流れでは異なる線となる[8]
  • 非粘性流体の速度場の変化を支配する運動方程式は、重力などの外力を除けば、圧力のみで記述できる。1755年にレオンハルト・オイラーにより定式化されたオイラー方程式と呼ばれる1階非線型偏微分方程式が非粘性流体の支配方程式である。粘性流体の支配方程式はナビエ-ストークス方程式とよばれ、オイラー方程式に粘性散逸項を加えたものである。

出典

  1. ^ a b c d 今井功『流体力学(前編)』裳華房〈物理学選書 ; 14〉、1973年11月25日発行。ISBN 4-7853-2314-0全国書誌番号:69025715 
  2. ^ 山田英巳; 濱川洋充; 田坂裕司『流れ学 流体力学と流体機械の基礎』森北出版、2016年、5頁。 
  3. ^ 湯川秀樹他 『新装版 現代物理学の基礎 古典物理学I』 岩波書店、2011年8月26日第1刷発行、ISBN 978-4-00-029801-8
  4. ^ 小峯龍男『よくわかる最新流体工学の基本』秀和システム、2006年4月6日第1版第1刷発行。ISBN 4-7980-1283-1 
  5. ^ 谷一郎『流れ学』岩波書店〈岩波全書〉、1967年5月30日発行。ISBN 4-00-021431-4全国書誌番号:67003365 
  6. ^ a b c d 巽友正『新物理学シリーズ21 流体力学』培風館、1982年4月15日初版発行。ISBN 4-563-02421-X全国書誌番号:82029938 
  7. ^ 山田英巳; 濱川洋充; 田坂裕司『流れ学 流体力学と流体機械の基礎』森北出版、2016年、6頁。 
  8. ^ a b c 神部勉『流体力学』裳華房、1995年9月20日発行。ISBN 4-7853-2063-X 
  9. ^ シュッツ (Bernard F. Schutz); 江里口良次・二間瀬敏史訳『相対論入門』丸善、2010年11月30日発行。ISBN 978-4-621-08309-3 
  10. ^ 後野正雄 流れの科学講義ノート
  11. ^ 大橋秀雄『流体力学 1』コロナ社〈標準機械工学講座 ; 11〉、1982年12月10日発行。ISBN 4-339-04010-X全国書誌番号:83007052 

関連項目


流体

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/05/09 10:05 UTC 版)

静水圧平衡」の記事における「流体」の解説

静水圧平衡流体静力学や流体の平衡原理と密接に関連している。静水圧平衡水中物質重さ計る際に重要な役割果たしており、これがアルキメデスによる比重発見つながった一般に地球大気における水平スケールが約100km以上の現象や、海洋大部分では、良い精度静水圧平衡成り立っていると見なすことができる。

※この「流体」の解説は、「静水圧平衡」の解説の一部です。
「流体」を含む「静水圧平衡」の記事については、「静水圧平衡」の概要を参照ください。

ウィキペディア小見出し辞書の「流体」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ

流体

出典:『Wiktionary』 (2019/07/11 05:19 UTC 版)

名詞

りゅうたい

  1. 液体気体総称

派生語

翻訳


「流体」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。



流体と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「流体」の関連用語

流体のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



流体のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
ダイキン工業ダイキン工業
Copyright (C) 2025 DAIKIN INDUSTRIES, ltd. All Rights Reserved.
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの流体 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの静水圧平衡 (改訂履歴)、物質の状態 (改訂履歴)、状態方程式 (宇宙論) (改訂履歴)、仕事 (物理学) (改訂履歴)、連続体力学 (改訂履歴)、境界線上のホライゾン (改訂履歴)、開口率 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。
Text is available under Creative Commons Attribution-ShareAlike (CC-BY-SA) and/or GNU Free Documentation License (GFDL).
Weblioに掲載されている「Wiktionary日本語版(日本語カテゴリ)」の記事は、Wiktionaryの流体 (改訂履歴)の記事を複製、再配布したものにあたり、Creative Commons Attribution-ShareAlike (CC-BY-SA)もしくはGNU Free Documentation Licenseというライセンスの下で提供されています。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS