2020-08-13

anond:20200813160408

本体の導入コストが高い、かつランニングコストが高いという意味

EUVはスズを熱して筒の先から水滴のようにして真空中に吐き出したのに対して、レーザーを当ててプラズマを作って励起、

そこから目的の13.5nmの波長の光を作る。EUVってのはその13.5nmの波長が極端紫外光って名前の略。

真空にするのはEUVが大気には吸収されるため。


そのスズのプラズマから、光以外に大量のスズの粒子が飛び出てくる。

200W~250Wくらいのレーザーを当てているので、そのエネルギーが粒子に移っている。

粒子の中には高エネルギーを持ったものから、低エネルギーのものまで沢山ある。大きさもバラバラ


半導体を作るためにはリソグラフィという虫眼鏡のように集光させる必要があるが、

EUVは通常の虫眼鏡のような集光レンズでは光が吸収されるので、鏡に反射させて集光させる方式を取っている。

プラズマから光が出る方向は、レーザーの当て方によって変えることはできるが、光が一番強い方向に、エネルギーを持った粒子が飛び出てしまう。

そうなると鏡が粒子によって削れてしまう。これが装置寿命につながる。

真空をひいているので、ミラーを交換するのに大気圧に戻しして、再び真空にするといった時間的なロスが発生する。この間ウェーハを流すことができず、収益悪化につながる。

ミラーと言っているが、日常品で使うようなアルミミラーではなく、EUVを反射させるためのもの自分が知っているのはモリブデンを多層膜にしたもの。他にもあるかもしれない。

ミラー以外にも長時間使っているとスズが堆積していくので、真空度が下がらないといったことが起こる。


プラズマの粒子は、ウェーハ側にも問題を起こす。

半導体を作るうえでnmのゴミがあると不良品になるが、シリコン側にも影響する。

大量に落ちる所は避けてウェーハを置くように、複数ミラーを置くことになるが、ミラーでの反射回数を増やすと、光量が足りなくなる。

また距離を離しても光量が減る。

よって光源とウェーハを近づけることになるが、プラズマからエネルギーを失ったスズ分子がウェーハに落ちる。

この問題に対しては、ウェーハに保護膜をつけるといった対策方法が取られる。もちろんこれがコストに響く。


保護膜のデメリットはなにかというと、保護膜でEUVが吸収されてしまう。

保護膜なし場合は200Wのレーザーで済むが、保護膜ありだと250W必要となる。

レーザーを高出力にすると、先ほどのミラーが削られる速度が上がる、レーザー自体寿命が縮まるといったデメリットにつながる。


EUVで利益を上げられないので、グローバルファウンドリーは導入前に撤退した。

EUV使って利益を上げられるのは、現時点ではAppleのような世界中を寡占しているようなメーカーの依頼品のみ。

それこそ数億の大量生産でようやく元のコストが高くてもやっていける。

そんなメーカーは限られているので、TSMCのように複数メーカーから依頼を受けているファウンドリーでないと導入が難しい。



もう一つの質問、40nmが何用途か。

最先端の微細ロジック不要な所がある。Arduinoのような趣味用のマイコンでもいいし、その辺のオーディオ自動車ゲームセンターのアームの制御など、

処理速度が不要な部分がある。

例えばモータ制御だと、モーターの回転数の上限はマイコンCPU性能で律速しない。ベクトル計算必要だとしても、最先端プロセスを使ってコストが上がるよりも、

少し古いプロセス製品コストが上がらない方がいいといった分野もある。

毎年や2年ごとに価格が高くなっていくスマホのような製品ばかりではない。


秋月で売ってるマイコンCPLDなどは、もう少しプロセスの古いものを使っているはず。

記事への反応(ブックマークコメント)

ログイン ユーザー登録
ようこそ ゲスト さん