タグ

N-gramに関するbeth321のブックマーク (2)

  • 第6回 N-gramと形態素解析との比較 | gihyo.jp

    これまでに、N-gramと形態素解析の2つの検索エンジンの、見出し語の切り出し方法を説明しました。今回は、2つの見出し語の切り出し方法を比較し、それぞれの得意な点、不得意な点を明らかにしていきます。 2つの手法の概要 はじめに、2つの手法をおさらいしてみます。 形態素解析 検索対象のテキストを形態素解析を行い分かち書きを行う 分かち書きした単位を見出し語として転置インデックスを作成する 転置インデックスを元に検索を行う N-gram 検索対象のテキストをN文字単位の文字列片に分解する 分解した文字列片を見出し語として転置インデックスを作成する 検索語をN文字単位の文字列片に分け検索を行う 文字列の出現位置情報を利用すれば、漏れのない完全一致の検索が可能 大きな違いは、「⁠転置インデックスの見出し語をどのように作るか」というプロセスが異なる点です。形態素解析は構文解析を行って分かち書きを行う

    第6回 N-gramと形態素解析との比較 | gihyo.jp
  • 第5回 N-gramのしくみ | gihyo.jp

    前回は形態素解析を使う検索エンジンのしくみについて説明しました。今回は、FINDSPOTで使用しているN-gramという検索エンジンのしくみについて説明します。 N-gramによる見出し語の切り出し 前回は、形態素解析による検索エンジンでは、検索可能な最小単位が分かち書きの切り分け単位となる点を説明しました。 一方、N-gramを使った検索エンジンでは、単純に文字の並びを見出し語としてインデックスを作成します。1文字を元にインデックスを作成する方法をユニグラム、2文字の並びを元にインデックスを作成する方法をバイグラム、3文字の並びを元にインデックスを作成する方法をトリグラムと呼んでいます。 1文字:ユニグラム 2文字:バイグラム 3文字:トリグラム N-gramによる見出し語の切り出しは、形態素解析のための文法解析を伴わないため、特定の自然言語に依存しないという特徴があります。 FINDS

    第5回 N-gramのしくみ | gihyo.jp
  • 1