エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント2件
- 注目コメント
- 新着コメント
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
分散学習用TensorFlowコードの書き方 - めもめも
何の話かというと Google Cloud MLを利用して、TensorFlowの分散学習を行う方法です。取り急ぎ、自分用... 何の話かというと Google Cloud MLを利用して、TensorFlowの分散学習を行う方法です。取り急ぎ、自分用のメモとして公開しておきます。 分散学習にはいくつかのパターンがありますが、最もシンプルな「データ分散」の場合を説明します。各ノードは同じモデルに対して、個別に学習データを適用して、Variableを修正する勾配ベクトルを計算します。それぞれで計算した勾配ベクトルを用いて、共通のVariableを修正していきます。 前提知識 TensorFlowの分散学習処理を行う際は、3種類のノードを使用します。 ・Parameter Server:Workerが計算した勾配ベクトルを用いて、Variableのアップデートを行います。 ・Worker:教師データから勾配ベクトルを計算します。 ・Master:Workerと同様の処理に加えて、学習済みモデルの保存やテストセットに対する
2017/05/03 リンク