エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
MCMC と焼きなまし法 - Qiita
マルコフ連鎖モンテカルロ法(MCMC)と焼きなまし法はともにヒューリスティックの分野でよくつかわれる手... マルコフ連鎖モンテカルロ法(MCMC)と焼きなまし法はともにヒューリスティックの分野でよくつかわれる手法だと思います. この記事では焼きなまし法を少し理論的な面から見たい人のために, MCMC の枠組みから焼きなまし法を説明することを目標とします. MCMC の基本 MCMC の目標とするところは与えられた確率分布 $p(z)$ からその分布に従ったデータの列 $z ^ {(i)}$ をサンプリングすることです.MCMCのアルゴリズムを上手に設計すれば高次元の分布からも効率的にサンプリング可能なことが知られています. 例えばマラソンでは観測結果 $X$ とそれを生成したパラメータ $\theta$ があった場合,その事後分布 $p(\theta | X) \propto p(\theta) p(X | \theta)$ から $\theta$ を MCMC でサンプリングすることで $\t