エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
セントルイス・ワシントン大学やAdobeら、1枚の画像から平面深度マップをピース単位で再構築する機械学習を用いた手法を発表
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
セントルイス・ワシントン大学やAdobeら、1枚の画像から平面深度マップをピース単位で再構築する機械学習を用いた手法を発表
セントルイス・ワシントン大学やAdobeら、1枚の画像から平面深度マップをピース単位で再構築する機械学... セントルイス・ワシントン大学やAdobeら、1枚の画像から平面深度マップをピース単位で再構築する機械学習を用いた手法を発表 2018-07-27 セントルイス・ワシントン大学、Adobe Research、Argo AI、サイモンフレーザー大学の研究者らは、屋内シーンにおける1枚の画像からピース単位の平面深度マップを再構築する「PlaneNet」を発表しました。 論文:PlaneNet: Piece-wise Planar Reconstruction from a Single RGB Image 著者:Chen Liu, Jimei Yang, Duygu Ceylan, Ersin Yumer, Yasutaka Furukawa GitHub:art-programmer/PlaneNet (左から順に、入力画像、ピース単位の平面セグメンテーション、再構成した深度マップ、テクスチャ