偶然短歌bot @g57577 ウィキペディア日本語版(2014年11月の版)で、偶然57577になっている文章を短歌としてつぶやきます。何かあれば @inaniwa3 までお願いします。
偶然短歌bot @g57577 ウィキペディア日本語版(2014年11月の版)で、偶然57577になっている文章を短歌としてつぶやきます。何かあれば @inaniwa3 までお願いします。
ちょっと調べてみたらタイトルの件について言及してる記事があまり多くなかったので、ざっくり書いてみます。なお、この記事はid:shakezoさんの 実務でRandomForestを使ったときに聞かれたこと へのオマージュです。というか、実は僕もこの記事を読んでから「多分Rなら専用の関数なんかもあるだろうし簡単にできるはず」と思って以前よりも積極的にやるようになったのでした(笑)。 総論:何で機械学習するのにチューニングが必要なの? どんな機械学習でも、何かしらのチューニングパラメータを持っています。例えばソフトマージンSVMならマージンパラメータCがありますし、非線形ガウシアンカーネルSVMならさらにカーネルパラメータのσとかが入ります。SMO(逐次最大最適化)アルゴリズムを利用するのであれば、さらにさらにtoleranceとかも入ってきます。 しかも、ちょっといじってみればすぐ分かると思う
集団学習(ensemble learning)は、決して精度が高くない複数の結果を統合・組み合わせることで精度を向上させる機械学習方法である。複数の結果の統合・組み合わせの方法としては、分類問題では多数決、数値の予測(回帰)問題では平均が多く用いられている。 集団学習では、異なる重み、あるいは異なるサンプルから単純なモデルを複数作成し、これらを何らかの方法で組み合わせることで、精度と汎化力を両立するモデルを構築する。 本稿では、集団学習方法による、回帰・分類のアルゴリズムバギング(bagging)、ブースティング(boosting)、ランダム森(random forest)の基本概念およびこれらのRのパッケージと関数を紹介する。 機械学習の問題では、学習によって回帰・分類を行うシステムを学習機械と呼ぶ。文献によっては学習機械を仮説(hypothesis)、分類器・識別器(classi
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く