協調フィルタリングを使用してユーザーの評価を予測する例。最初は、さまざまな項目 (動画、画像、ゲームなど) を評価する。その後、システムは、ユーザーがまだ評価していないアイテムに対するユーザーの評価について予測する。これらの予測は、アクティブなユーザーと同様の評価を持つ他のユーザーの既存の評価に基づいて作成される。例えば上記の場合、システムは、アクティブなユーザーがビデオを気に入らないだろうと予測している。 協調フィルタリング(きょうちょうフィルタリング、Collaborative Filtering、CF)は、多くのユーザの嗜好情報を蓄積し、あるユーザと嗜好の類似した他のユーザの情報を用いて自動的に推論を行う方法論である。趣味の似た人からの意見を参考にするという口コミの原理に例えられることが多い。 例えば、ユーザAがアイテムXを好むとすると、アイテムXを好む別のユーザBが好むアイテムYを
Algorithms of Recommender Systems ⟨ http://www.kamishima.net/ ⟩ Release: 2016-09-26 21:53:16 +0900; 9645c3b i 2007 11 [ 07] 2008 1 [ 08a] 2008 3 [ 08b] 3 (1) (3) GitHub https://github.com/tkamishima/recsysdoc TYPO GitHub pull request issues I II III IV V ii J. Riedl J. Herlocker GroupLens WWW iii 𝑥 𝑋 𝐱 𝐗 𝑥 𝑦 𝑋 𝑌 𝐱 𝐲 𝑛 𝑚 {1, … , 𝑛} {1, … , 𝑚} 𝑦 𝑦 𝑥 x 𝑎 𝑟𝑥𝑦 𝑥 𝑦 ̄ 𝑟𝑥
A recommender system, or a recommendation system (sometimes replacing system with terms such as platform, engine, or algorithm), is a subclass of information filtering system that provides suggestions for items that are most pertinent to a particular user.[1][2][3] Recommender systems are particularly useful when an individual needs to choose an item from a potentially overwhelming number of items
『MarkeZine』が主催するマーケティング・イベント『MarkeZine Day』『MarkeZine Academy』『MarkeZine プレミアムセミナー』の 最新情報をはじめ、様々なイベント情報をまとめてご紹介します。 MarkeZine Day
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く