scikit-learn(サイキット・ラーン、旧称: scikits.learn)は、Pythonのオープンソース機械学習ライブラリ[2]である。サポートベクターマシン、ランダムフォレスト、勾配ブースティング、k近傍法、DBSCANなどを含む様々な分類、回帰、クラスタリングアルゴリズムを備えており、Pythonの数値計算ライブラリのNumPyとSciPyとやり取りするよう設計されている。 教師あり学習と教師なし学習に対応している。ただし、強化学習・深層学習・グラフィカルモデル(隠れマルコフモデルなど)・シーケンス予測には対応しない方針となっている[3]。 Scikit-learnプロジェクトは David Cournapeau によるGoogle Summer of Codeプロジェクト、scikits.learnとして始まった。名前は「Scikit」 (SciPy Toolkit) つま
1. scikit-learnを使った実験概要 Gradient Boostingについて - 準備編 - ( http://goo.gl/y2EVLI ) の予告通り今回はSklearnで実験をしてみました。目的は、GBDTを使ったfeature transformationが予測を改善するのか、という点を確認する事です。 ところで、Gradient Boostingでfeature transformationする話は昔からあったはずですが、ADKDD'14で発表されたPractical Lessons from Predicting Clicks on Ads at Facebook[1]が非常に有名です。実験はこの論文がやっている事と同じですが、featureの安定性等は計算していません。実務で適用する場合は重要な点ですので、ぜひトライしてみて下さい(結果を教えて頂けるととてもうれ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く