タグ

最適化に関するsshiのブックマーク (2)

  • 計算的な深さと脳

    ニューロンが入力を受けてからスパイクを出すまでは早くとも数ミリ秒かかる。人間が反応するまでの時間は零点何秒かだから、入力と出力の間には最大に見積もっても数十段のニューロンが介在するだけである。(実際はもっと段数が低いだろう。) 一方コンピュータの方は現在のネズミ以下の判別能力しかないような画像認識をするにあたってさえ数千万サイクルの計算を行わなくてはならない。 だから、脳が物凄い並列計算をやっているに違い無い。ここまでは普通の話ね。 で、問題は「じゃ、物凄い並列な機械をつくったら脳の能力を再現できるのかよ」ということ。もちろん誰も答えをしらない。どんなアルゴリズムを使えば良いか分からないし。 人によっては絶望して「新しい物理法則を」とか「量子論的並列性」とか、「魂」とかに行っちゃう。 で、僕も答えは持って無いけど、この問題を考えるにあたって以下の「計算的大きさ」と「計算的深さ」の概念を

    sshi
    sshi 2005/11/01
    めちゃくちゃおもしろい。文章に込められた情報量とビジョンの密度がすごく高い。
  • 連載: IBM Watson Workspace #鬼わか アプリケーション開発: 第 7 回: IBM Watson Workspace で AI を利用したアプリ連携の実現 #鬼わか 解説(前編)

    IBM Developer is your one-stop location for getting hands-on training and learning in-demand skills on relevant technologies such as generative AI, data science, AI, and open source.

    連載: IBM Watson Workspace #鬼わか アプリケーション開発: 第 7 回: IBM Watson Workspace で AI を利用したアプリ連携の実現 #鬼わか 解説(前編)
    sshi
    sshi 2005/06/09
    pythonの高速化 Cなみらしい
  • 1