Reimagine in-app search and analyticsIndex your vector, text, geospatial and JSON data for the most efficient hybrid search and real-time analytics at any scale
Reimagine in-app search and analyticsIndex your vector, text, geospatial and JSON data for the most efficient hybrid search and real-time analytics at any scale
こんにちは。MackerelチームでCRE(Customer Reliability Engineer)をしているid:syou6162です。 CREチームではカスタマーサクセスを進めるため、最近データ分析により力を入れています(参考1, 参考2)。データ分析を正確に行なうためには、データに関する正確な知識が必要です。今回はより正確なデータ分析を支えるためのメタデータを継続的に管理する仕組みについて書いてみます。 データに対する知識: メタデータ データ分析を正確に行なうためには、データ自身に関する知識(=メタデータ)が必要です。例えば、Mackerelのデータ分析タスクでは以下のような知識が必要とされることが多いです。 このテーブル / カラムは何のためのテーブルなのか 似たようなカラムとの違い 集計条件の違い、など データがどのような値を取り得るか SELECT column, COU
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く