タグ

mapreduceに関するyumatsumoのブックマーク (5)

  • Hadoop Streaming - naoyaのはてなダイアリー

    id:naoya:20080511:1210506301 のエントリのコメント欄で kzk さんに教えていただいた Hadoop Streaming を試しています。 Hadoop はオープンソースの MapReduce + 分散ファイルシステムです。Java で作られています。Yahoo! Inc のバックエンドや、Facebook、Amazon.com などでも利用されているとのことです。詳しくは http://codezine.jp/a/article/aid/2448.aspx (kzk さんによる連載記事)を参照してください。 Hadoop Streaming 記事にもあります通り、Hadoop 拡張の Hadoop Streaming を使うと標準入出力を介するプログラムを記述するだけで、Hadoop による MapReduce を利用することができます。つまり、Java 以外

    Hadoop Streaming - naoyaのはてなダイアリー
  • RubyでHadoopをラップ、分散処理ツールキットが登場 - @IT

    2009/05/12 米新聞社大手のニューヨーク・タイムズは5月11日、Rubyによる大規模分散処理のツールキット「Map/Reduce Toolkit」(MRToolkit)をGPLv3の下にオープンソースで公開したと発表した。MRToolkitは、すでに稼働しているクラスタ上のHadoopと合わせて使うことでRubyで容易にMap/Reduce処理を記述することができる一種のラッパー。処理自体はHadoopが行う。すでにHadoopを使っているユーザーであれば、中小規模のプロジェクトに対して、すぐにMRToolkitを適用可能としている。 デフォルトで有用なMap、Reduceの処理モジュールが含まれていて、数行のRubyスクリプトを書くだけで、例えば膨大なApacheのログからIPアドレス別の閲覧履歴をまとめるといった処理が可能という。独自にMapやReduceの処理を定義することも

  • 本を読む GREE LabsでHadoopの話を聞いてきた

    GREEさんで不定期でやってる、GREE Labsオープンソーステクノロジー勉強会で、Hadoopの話を聞いてきました。Hadoopは、つまりはGoogleのGFSやMapReduceのクローンだそうで、「Googleを支える技術」にトキメいた人なら必見ですね。 発表は、技術面を簡潔に押さえたうえでわかりやすく、そのうえ実際の利用事例の話も聞けたのが面白かったと思います。最近のWeb系では、サービス面でもマネタイズ面でも、データマイニングとか行動ターゲティングとかがアツいんだなぁと思いました。 プレゼン資料もust録画も公開されていますが、以下、自分のメモという意味で記録しておきます。 Hadoopについて(太田一樹) Preferred InfrastructureのCTOで、Sedueの作者。大量のデータの処理がテーマで、半分は酒でできているw。そんなこんなで、はてブ検索でも使われてい

  • Hadoopで、かんたん分散処理 (Yahoo! JAPAN Tech Blog)

    ヤフー株式会社は、2023年10月1日にLINEヤフー株式会社になりました。LINEヤフー株式会社の新しいブログはこちらです。LINEヤフー Tech Blog こんにちは、地域サービス事業部の吉田一星です。 今回は、Hadoopについて、Yahoo! JAPANでの実際の使用例を交えながら書きたいと思います。Hadoopとは、大量のデータを手軽に複数のマシンに分散して処理できるオープンソースのプラットフォームです。 複数のマシンへの分散処理は、プロセス間通信や、障害時への対応などを考えなければならず、プログラマにとって敷居が高いものですが、 Hadoopはそういった面倒くさい分散処理を一手に引き受けてくれます。 1台では処理にかなり時間がかかるような大量のデータも、複数マシンに分散させることで、驚くべきスピードで処理を行うことができます。 例えば、今まで1台でやっていた、あるログ集計処理

    Hadoopで、かんたん分散処理 (Yahoo! JAPAN Tech Blog)
  • MapReduce - naoyaのはてなダイアリー

    "MapReduce" は Google のバックエンドで利用されている並列計算システムです。検索エンジンのインデックス作成をはじめとする、大規模な入力データに対するバッチ処理を想定して作られたシステムです。 MapReduce の面白いところは、map() と reduce() という二つの関数の組み合わせを定義するだけで、大規模データに対する様々な計算問題を解決することができる点です。 MapReduce の計算モデル map() にはその計算問題のデータとしての key-value ペアが次々に渡ってきます。map() では key-value 値のペアを異なる複数の key-value ペアに変換します。reduce() には、map() で作った key-value ペアを同一の key で束ねたものが順番に渡ってきます。その key-values ペアを任意の形式に変換すること

    MapReduce - naoyaのはてなダイアリー
  • 1