タグ

関連タグで絞り込む (1)

タグの絞り込みを解除

自然言語処理に関するzonomuroのブックマーク (2)

  • 自然言語処理(NER, RE)を使ってニュースデータから知識グラフを構築してみました - GMOインターネットグループ グループ研究開発本部

    2022.04.07 自然言語処理(NER, RE)を使ってニュースデータから知識グラフを構築してみました はじめに こんにちは、次世代システム研究室のC.Wです。 知識グラフは近年流行始めた概念で、お恥ずかしいのですが今年に入ってから知識グラフの概念を知りました。その思想を分かればわかるほど高い興味が湧いていきて、これこそがデータの最終的な形式ではないのかと思い始めています。 ただ構築しやすくないのが知識グラフの問題であって、自然言語処理を使って一発の自動作成ができるとすごく嬉しいと思ったので今回のテーマを研究しました。それでは始めましょう。 TL;DR ニュースデータからグラフDBに落とすまでを一通り試して、結果は微妙だった 自然言語処理の結果がグラフの意義性を左右している (言ってみれば当たり前のことです!) 知識グラフの概要 知識グラフとは、グラフ構造のデータモデルまたはトポロジを

  • 固有表現抽出のアノテーションデータについて - NLP太郎のブログ

    自然言語処理技術のなかでも固有表現抽出(Named Entity Recognition; NER)は情報抽出の処理をやろうとするときにとても役立つ。 応用は幅広く、会社名や個人名などの情報抽出処理、個人情報除去などのような抽出した情報に対する処理、代名詞の解析(照応解析・共参照解析)のような文脈解析処理などに用いられる。 最も簡単なNERの方法としては、辞書や形態素解析結果や正規表現などに基づくルールを用いて、単語列にラベリングする方法があるが、会社名など判断が難しいケースについては機械学習によってNERを行うことが有効なことが多い。機械学習ベースの既存の固有表現抽出器を使ってみたい場合には、GiNZAやKNPのようなNERモデルが同梱されているツールを使用してみるのがよい。 しかし公開モデルの性能では満足いかない場合に自分でモデルを構築しようとしても、公開データセットが見つけにくかった

    固有表現抽出のアノテーションデータについて - NLP太郎のブログ
  • 1