Abstract
When leukocytes are exposed to mitogens or antigens in vitro, they release bone-resorbing activity into the culture supernatants which can be detected by bioassay1,2. Like many lymphocyte-monocyte products, this activity has been difficult to purify because of its low abundance in activated leukocyte cultures and the unwieldy bioassay required to detect biological activity. Partially purified preparations of this activity inhibit bone collagen synthesis in organ cultures of fetal rat calvariae3. Recent data suggest that both activated lymphocytes and monocytes release factors which could contribute to this activity2. Recently, monocyte-derived tumour necrosis factor α (TNF-α) and lymphocyte-derived tumour necrosis factor β (TNF-β) (previously called lymphotoxin), two multifunctional cytokines which have similar cytotoxic effects on neoplastic cell lines, have been purified to homogeneity4,5 and their complementary DNAs cloned and expressed in Escherichia coli6,7. As both of these cytokines are likely to be present in activated leukocyte supernatants, we tested purified recombinant preparations for their effects on bone r(c)sorption and bone collagen synthesis in vitro, and report here that both cytokines at 10−7 to 10−9M caused osteoclastic bone r(c)sorption and inhibited bone collagen synthesis. These data suggest that at least part of the bone-resorbing activity present in activated leukocyte culture supernatants may be due to these cytokines.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
196,21 € per year
only 3,85 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Horton, J. E., Oppenheim, J. J., Mergenhagen, S. E. & Raisz, L. G. J. Immun. 113, 1278–1287 (1974).
Mundy, G. R. & Bertolini, D. R. in Endocrinology, int. Congr. Ser. 665 (eds Labrie, F. & Proulx, L.) 587–590 (Excerpta Medica, Amsterdam, 1984).
Raisz, L. G. et al. J. clin. Invest. 56, 408–413 (1975).
Aggarwal, B. B., Henzel, W. J., Moffat, B., Kohr, W. J. & Harkins, R. N. J. biol. Chem. 260, 2334–2344 (1985).
Aggarwal, B. B. et al. J. biol. Chem. 260, 2345–2354 (1985).
Gray, P. W. et al. Nature 312, 721–724 (1984).
Pennica, D. et al. Nature 312, 724–729 (1984).
Raisz, L. G. J. clin. Invest. 44, 103–116 (1965).
Mundy, G. R., Luben, R. A., Raisz, L. G., Oppenheim, J. J. & Buell, D.N. New Engl. J. Med. 290, 867–871 (1974).
Mundy, G. R. & Raisz, L. G. J. clin. Invest. 60, 122–128 (1977).
Horton, J. E., Raisz, L. G., Simmons, H. A., Oppenheim, J. J. & Mergenhagen, S. E. Science 177, 793–795 (1972).
Peterkofsky, B. & Diegelmann, R. F. Biochemistry 10, 988–994 (1971).
Dietrich, J. W., Canalis, E. M., Maina, D. M. & Raisz, L. G. Endocrinology 98, 943–959 (1976).
Kream, B. E., Smith, M. D., Canalis, E. & Raisz, L. G. Endocrinology 116, 296–302 (1985).
Majeska, R. J., Rodan, S. B. & Rodan, G. A. Expl Cell Res. 111, 465–468 (1978).
Lowry, O. H. Meth. Enzym. 4, 371–372 (1955).
Chen, P., Trummel, C., Horton, J., Baker, J. J. & Oppenheim, J. J. Eur. J. Immun. 6, 732–736 (1976).
Gowen, M., Wood, D. D., Ihrie, E. J., McGuire, M. K. B. & Russell, R. G. G. Nature 306, 378–380 (1983).
Dominguez, J. H. & Mundy, G. R. Calcif. Tissue Int. 31, 29–34 (1980).
Klein, D. C. & Raisz, L. G. Endocrinology 86, 1436–1440 (1970).
Mundy, G. R. et al. New Engl. J. Med. 310, 1718–1727 (1984).
Mundy, G. R., Raisz, L. G., Cooper, R. A., Schechter, G. P. & Salmon, S. E. New Engl. J. Med. 291, 1041–1046 (1974).
Nedwin, G. E., Svedersky, T. S., Bringman, T. S., Palladino, M. A. & Goeddel, D. V. J. Immun. 135, 2492–2497 (1985).
Luben, R. A., Mundy, G. R., Trummel, C. L. & Raisz, L. G. J. clin. Invest. 53, 1473–1480 (1974).
Beutler, B. et al. Nature 316, 552–554 (1985).
Torti, F. M., Dieckmann, B., Beutler, B., Cerami, A. & Ringold, G. M. Science 229, 867–869 (1985).
Beutler, B., Milsark, I. W. & Cerami, A. C. Science 229, 869–871 (1985).
Dewhirst, F. E., Stasheuko, P. P., Mole, J. E. & Tsurumachi, T. J. Immun. 135, 2562–2568 (1985).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Bertolini, D., Nedwin, G., Bringman, T. et al. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature 319, 516–518 (1986). https://doi.org/10.1038/319516a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/319516a0
This article is cited by
-
Associations between blood inflammatory markers and bone mineral density and strength in the femoral neck: findings from the MIDUS II study
Scientific Reports (2023)
-
Carboxymethyl chitosan regulates oxidative stress and decreases the expression levels of tumor necrosis factor α in macrophages induced by wear particles
Cytotechnology (2023)
-
Factors secreted by monosodium urate crystal-stimulated macrophages promote a proinflammatory state in osteoblasts: a potential indirect mechanism of bone erosion in gout
Arthritis Research & Therapy (2022)
-
Association between total bilirubin and bone mineral density level in adolescents
BMC Musculoskeletal Disorders (2022)
-
Inflammatory potential of diet and bone mineral density in a senior Mediterranean population: a cross-sectional analysis of PREDIMED-Plus study
European Journal of Nutrition (2022)