Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Signalling through C-type lectin receptors: shaping immune responses

Key Points

  • Crosstalk between pattern recognition receptors (PRRs) expressed by dendritic cells orchestrates T helper (TH) cell differentiation through the induction of specific cytokine expression profiles, tailored to invading pathogens. C-type lectin receptors (CLRs) have an important role in orchestrating the induction of signalling pathways that regulate adaptive immune responses.

  • CLRs can control adaptive immunity at various levels by inducing signalling on their own, through crosstalk with other PRRs or by inducing carbohydrate-specific signalling pathways.

  • DC-specific ICAM3-grabbing non-integrin (DC-SIGN) interacts with mannose-carrying pathogens including Mycobacterium tuberculosis, HIV-1, measles virus and Candida albicans to activate the serine/threonine protein kinase RAF1. RAF1 signalling leads to the acetylation of Toll-like receptor (TLR)-activated nuclear factor-κB (NF-κB) subunit p65 and affects cytokine expression, such as inducing the upregulation of interleukin-10 (IL-10).

  • DC-associated C-type lectin 1 (dectin 1) triggering by a broad range of fungal pathogens, such as C. albicans, Aspergillus fumigatus and Pneumocystis carinii, results in protective antifungal immunity through the crosstalk of two independent signalling pathways — one through spleen tyrosine kinase (SYK) and one through RAF1 — that are essential for the expression of TH1 and TH17 cell polarizing cytokines.

  • Crosstalk between the SYK and RAF1 pathways is both synergistic and antagonizing to fine-tune NF-κB activity: although Ser276 phosphorylation of p65 leads to enhanced transcriptional activity of p65 itself through acetylation, it also inhibits the transcriptional activity of the NF-κB subunit RELB by sequestering it in p65–RELB dimers, which are transcriptionally inactive.

  • The diversity in CLR-mediated signalling provides some major challenges for the researches to elucidate and manipulate the signalling properties of this exciting family of receptors. However, the recent advances strongly support the use of CLR targeting vaccination strategies using dendritic cells to induce or redirect adaptive immune responses as well as improve antigen delivery.

Abstract

C-type lectin receptors (CLRs) expressed by dendritic cells are crucial for tailoring immune responses to pathogens. Following pathogen binding, CLRs trigger distinct signalling pathways that induce the expression of specific cytokines which determine T cell polarization fates. Some CLRs can induce signalling pathways that directly activate nuclear factor-κB, whereas other CLRs affect signalling by Toll-like receptors. Dissecting these signalling pathways and their effects on host immune cells is essential to understand the molecular mechanisms involved in the induction of adaptive immune responses. In this Review we describe the role of CLR signalling in regulating adaptive immunity and immunopathogenesis and discuss how this knowledge can be harnessed for the development of innovative vaccination approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DC-SIGN signalling modulates TLR signalling through RAF1-dependent acetylation of p65.
Figure 2: Signalling by BDCA2, DCIR and MICL antagonizes TLR signalling.
Figure 3: Dectin 1 signalling through SYK and RAF1 directs NF-κB-mediated cytokine expression.
Figure 4: Signalling by dectin 2 and mincle leads to cytokine expression.
Figure 5: CLR signalling can be harnessed in vaccination approaches to tailor adaptive immune responses to pathogens.

Similar content being viewed by others

References

  1. Steinman, R. M. & Banchereau, J. Taking dendritic cells into medicine. Nature 449, 419–426 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Gringhuis, S. I. et al. C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-κB. Immunity 26, 605–616 (2007). This study identifies the RAF1 signalling pathway as being involved in the modulation of immune responses by DC-SIGN.

    Article  CAS  PubMed  Google Scholar 

  4. Gringhuis, S. I. et al. Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-κB activation through Raf-1 and SYK. Nature Immunol. 10, 203–213 (2009). This study shows that T H cell differentiation is tailored to the pathogen through the integration of two signalling pathways induced by dectin 1; one through RAF1 and one through SYK.

    Article  CAS  Google Scholar 

  5. Rogers, N. C. et al. SYK-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22, 507–517 (2005). This is the first study to show that SYK is essential for dectin 1-induced immunity.

    Article  CAS  PubMed  Google Scholar 

  6. Meyer-Wentrup, F. et al. DCIR is endocytosed into human dendritic cells and inhibits TLR8-mediated cytokine production. J. Leukoc. Biol. 85, 518–525 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Zelensky, A. N. & Gready, J. E. The C-type lectin-like domain superfamily. FEBS J. 272, 6179–6217 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Rothfuchs, A. G. et al. Dectin-1 interaction with Mycobacterium tuberculosis leads to enhanced IL-12p40 production by splenic dendritic cells. J. Immunol. 179, 3463–3471 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. van Kooyk, Y. & Rabinovich, G. A. Protein-glycan interactions in the control of innate and adaptive immune responses. Nature Immunol. 9, 593–601 (2008).

    Article  CAS  Google Scholar 

  10. Sato, K. et al. Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor γ chain to induce innate immune responses. J. Biol. Chem. 281, 38854–38866 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Cao, W. et al. BDCA2/Fc ɛRIγ complex signals through a novel BCR-like pathway in human plasmacytoid dendritic cells. PLoS Biol. 5, e248 (2007). This study demonstrates that C-type lectin BDCA2 pairs with a signalling adaptor molecule to induce B cell receptor-like signalling.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Yamasaki, S. et al. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nature Immunol. 9, 1179–1188 (2008).

    CAS  Google Scholar 

  13. Bakker, A. B. H., Baker, E., Sutherland, G. R., Phillips, J. H. & Lanier, L. L. Myeloid DAP12-associating lectin (MDL)-1 is a cell surface receptor involved in the activation of myeloid cells. Proc. Natl Acad. Sci. USA 96, 9792–9796 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marshall, A. S. et al. Identification and characterization of a novel human myeloid inhibitory C-type lectin-like receptor (MICL) that is predominantly expressed on granulocytes and monocytes. J. Biol. Chem. 279, 14792–14802 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Richard, M., Thibault, N., Veilleux, P., Gareau-Pagé, G. & Beaulieu, A. D. Granulocyte macrophage-colony stimulating factor reduces the affinity of SHP-2 for the ITIM of CLECSF6 in neutrophils: a new mechanism of action for SHP-2. Mol. Immunol. 43, 1716–1721 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Chen, C. H. et al. Dendritic-cell-associated C-type lectin 2 (DCAL-2) alters dendritic-cell maturation and cytokine production. Blood 107, 1459–1467 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gross, O. et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442, 651–656 (2006). This is a key study showing that non-TLRs such as CLRs require CARD9–BCL-10–MALT1 signalling to induce immunity.

    Article  CAS  PubMed  Google Scholar 

  18. Yamasaki, S. et al. C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia. Proc. Natl Acad. Sci. USA 106, 1897–1902 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goriely, S., Neurath, M. F. & Goldman, M. How microorganisms tip the balance between interleukin-12 family members. Nature Rev. Immunol. 8, 81–86 (2008).

    Article  CAS  Google Scholar 

  20. Geijtenbeek, T. B. H. et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med. 197, 7–17 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wellbrock, C., Karasarides, M. & Marais, R. The Raf proteins take centre stage. Nature Rev. Mol. Cell Biol. 5, 875–885 (2004).

    Article  CAS  Google Scholar 

  22. Hodges, A. et al. Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication. Nature Immunol. 8, 569–577 (2007).

    Article  CAS  Google Scholar 

  23. Chen, L.-F. et al. NF-κB RelA phosphorylation regulates RelA acetylation. Mol. Cell. Biol. 25, 7966–7975 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, L. F., Mu, Y. & Greene, W. C. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-κB. EMBO J. 21, 6539–6548 (2002). This report describes the importance of p65–RELA acetylation in controlling gene transcription.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Caparros, E. et al. DC-SIGN ligation on dendritic cells results in ERK and PI3K activation and modulates cytokine production. Blood 107, 3950–3958 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Shreffler, W. G. et al. The major glycoprotein allergen from Arachis hypogaea, Ara h 1, is a ligand of dendritic cell-specific ICAM-grabbing nonintegrin and acts as a Th2 adjuvant in vitro. J. Immunol. 177, 3677–3685 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Agrawal, S. et al. Different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase–mitogen-activated protein kinase and c-fos. J. Immunol. 171, 4984–4989 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Shan, M. et al. HIV-1 gp120 mannoses induce immunosuppressive responses from dendritic cells. PLoS Pathog. 3, e169 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hovius, J. W. et al. Salp15 binding to DC-SIGN inhibits cytokine expression by impairing both nucleosome remodeling and mRNA stabilization. PLoS Pathog. 4, e31 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Garg, R. et al. CD4 is the receptor for the tick saliva immunosuppressor, Salp15. J. Immunol. 177, 6579–6583 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Rock, J. et al. CD303 (BDCA-2) signals in plasmacytoid dendritic cells via a BCR-like signalosome involving Syk, Slp65 and PLCγ2. Eur. J. Immunol. 37, 3564–3575 (2007).

    Article  PubMed  CAS  Google Scholar 

  32. Hara, H. et al. The adaptor protein CARD9 is essential for the activation of myeloid cells through ITAM-associated and Toll-like receptors. Nature Immunol. 8, 619–629 (2007). This study shows that the activation of lymphoid and myeloid cells through ITAM-associated receptors or TLRs is regulated by CARMA1–BCL-10 and CARD9–BCL-10, respectively.

    Article  CAS  Google Scholar 

  33. Dzionek, A. et al. BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon α/β induction. J. Exp. Med. 194, 1823–1834 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kang, Y. J. et al. Calcineurin negatively regulates TLR-mediated activation pathways. J. Immunol. 179, 4598–4607 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Hamerman, J. A. et al. Inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J. Immunol. 177, 2051–2055 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Turnbull, I. R. et al. TREM-2 attenuates macrophage activation. J. Immunol. 177, 3520–3524 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Ivashkiv, L. B. A signal-switch hypothesis for cross-regulation of cytokine and TLR signalling pathways. Nature Rev. Immunol. 8, 816–822 (2008).

    Article  CAS  Google Scholar 

  38. Meyer-Wentrup, F. et al. Targeting DCIR on human plasmacytoid dendritic cells results in antigen presentation and inhibits IFN-α production. Blood 111, 4245–4253 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Chong, Z. Z. & Maiese, K. The Src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: diversified control of cell growth, inflammation, and injury. Histol. Histopathol. 22, 1251–1267 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. An, H. et al. Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1. Nature Immunol. 9, 542–550 (2008).

    Article  CAS  Google Scholar 

  41. An, H. et al. SHP-2 phosphatase negatively regulates the TRIF adaptor protein-dependent type I interferon and proinflammatory cytokine production. Immunity 25, 919–928 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Saijo, S. et al. Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nature Immunol. 8, 39–46 (2007).

    Article  CAS  Google Scholar 

  43. Taylor, P. R. et al. Dectin-1 is required for β-glucan recognition and control of fungal infection. Nature Immunol. 8, 31–38 (2007).

    Article  CAS  Google Scholar 

  44. Underhill, D. M., Rossnagle, E., Lowell, C. A. & Simmons, R. M. Dectin-1 activates SYK tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 106, 2543–2550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rawlings, D. J., Sommer, K. & Moreno-Garcia, M. E. The CARMA1 signalosome links the signalling machinery of adaptive and innate immunity in lymphocytes. Nature Rev. Immunol. 6, 799–812 (2006).

    Article  CAS  Google Scholar 

  46. Ferch, U. et al. MALT1 directs B cell receptor-induced canonical nuclear factor-κ B signaling selectively to the c-Rel subunit. Nature Immunol. 8, 984–991 (2007).

    Article  CAS  Google Scholar 

  47. Claudio, E., Brown, K., Park, S., Wang, H. & Siebenlist, U. BAFF-induced NEMO-independent processing of NF-κB2 in maturing B cells. Nature Immunol. 3, 958–965 (2002).

    Article  CAS  Google Scholar 

  48. Dejardin, E. et al. The lymphotoxin-β receptor induces different patterns of gene expression via two NF-κB pathways. Immunity 17, 525–535 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Gross, O. et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 1 Apr 2009 (doi: 10.1038/nature07965).

    Article  CAS  PubMed  Google Scholar 

  50. Mencacci, A. et al. Interleukin 18 restores defective Th1 immunity to Candida albicans in caspase 1-deficient mice. Infect. Immun. 68, 5126–5131 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Carmody, R. J., Ruan, Q. G., Liou, H. C. & Chen, Y. H. H. Essential roles of c-Rel in TLR-induced IL-23 p19 gene expression in dendritic cells. J. Immunol. 178, 186–191 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Jacque, E., Tchenio, T., Piton, G., Romeo, P.-H. & Baud, V. RelA repression of RelB activity induces selective gene activation downstream of TNF receptors. Proc. Natl Acad. Sci. USA 102, 14635–14640 (2005). This report identifies a new mechanism that regulates RELB activity by inducing inactive RELB–p65 dimers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Marienfeld, R. et al. RelB forms transcriptionally inactive complexes with RelA/p65. J. Biol. Chem. 278, 19852–19860 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Manel, N., Unutmaz, D. & Littman, D. R. The differentiation of human TH-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nature Immunol. 9, 641–649 (2008).

    Article  CAS  Google Scholar 

  55. Volpe, E. et al. A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses. Nature Immunol. 9, 650–657 (2008).

    Article  CAS  Google Scholar 

  56. Yang, L. et al. IL-21 and TGF-β are required for differentiation of human TH17 cells. Nature 454, 350–352 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Murphy, K. M. & Reiner, S. L. The lineage decisions of helper T cells. Nature Rev. Immunol. 2, 933–944 (2002).

    Article  CAS  Google Scholar 

  58. Barrett, N. A., Maekawa, A., Rahman, O. M., Austen, K. F. & Kanaoka, Y. Dectin-2 recognition of house dust mite triggers cysteinyl leukotriene generation by dendritic cells. J. Immunol. 182, 1119–1128 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Sorgi, C. A. et al. Histoplasma capsulatum cell wall β-glucan induces lipid body formation through CD18, TLR2, and dectin-1 receptors: correlation with leukotriene B4 generation androle in HIV-1 infection. J. Immunol. 182, 4025–4035 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Khader, S. A. et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nature Immunol. 8, 369–377 (2007).

    Article  CAS  Google Scholar 

  61. Madura Larsen, J. et al. BCG stimulated dendritic cells induce an interleukin-10 producing T-cell population with no T helper 1 or T helper 2 bias in vitro. Immunology 121, 276–282 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Gerosa, F. et al. Differential regulation of interleukin 12 and interleukin 23 production in human dendritic cells. J. Exp. Med. 205, 1447–1461 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yadav, M. & Schorey, J. S. The β-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood 108, 3168–3175 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Werninghaus, K. et al. Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRγ–Syk–Card9-dependent innate immune activation. J. Exp. Med. 206, 89–97 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. LeibundGut-Landmann, S. et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nature Immunol. 8, 630–638 (2007). This report describes the importance of the SYK-dependent CARD9–BCL-10–MALT1 complex in inducing T H 17 cell responses to fungi.

    Article  CAS  Google Scholar 

  66. Netea, M. G., Brown, G. D., Kullberg, B. J. & Gow, N. A. R. An integrated model of the recognition of Candida albicans by the innate immune system. Nature Rev. Microbiol. 6, 67–78 (2008).

    Article  CAS  Google Scholar 

  67. Dillon, S. et al. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J. Clin. Invest. 116, 916–928 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Geijtenbeek, T. B. H. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–597 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Chen, S. T. et al. CLEC5A is critical for dengue-virus-induced lethal disease. Nature 453, 672–676 (2008). This study shows that CLEC5A-induced immune responses are causing virus pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  70. Wu, P. et al. TLR9/TLR7-triggered downregulation of BDCA2 expression on human plasmacytoid dendritic cells from healthy individuals and lupus patients. Clin. Immunol. 129, 40–48 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Ronninger, M., Eklow, C., Lorentzen, J. C., Klareskog, L. & Padyukov, L. Differential expression of transcripts for the autoimmunity-related human dendritic cell immunoreceptor. Genes Immun. 9, 412–418 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Fujikado, N. et al. Dcir deficiency causes development of autoimmune diseases in mice due to excess expansion of dendritic cells. Nature Med. 14, 176–180 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Palucka, A. K., Ueno, H., Fay, J. W. & Banchereau, J. Taming cancer by inducing immunity via dendritic cells. Immunol. Rev. 220, 129–150 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Tacken, P. J., de Vries, I. J., Torensma, R. & Figdor, C. G. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nature Rev. Immunol. 7, 790–802 (2007).

    Article  CAS  Google Scholar 

  75. Bozzacco, L. et al. DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8+ T cells in a spectrum of human MHC I haplotypes. Proc. Natl Acad. Sci. USA 104, 1289–1294 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bonifaz, L. C. et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J. Exp. Med. 199, 815–824 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mukhopadhaya, A. et al. Selective delivery of β cell antigen to dendritic cells in vivo leads to deletion and tolerance of autoreactive CD8+ T cells in NOD mice. Proc. Natl Acad. Sci. USA 105, 6374–6379 (2008). This study shows that CLR targeting as a vaccination approach prevents autoimmunity by inducing antigen-specific tolerance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sancho, D. et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458, 899–903 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yoshitomi, H. et al. A role for fungal β-glucans and their receptor dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J. Exp. Med. 201, 949–960 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Karumuthil-Melethil, S., Perez, N., Li, R. & Vasu, C. Induction of innate immune response through TLR2 and dectin 1 prevents type 1 diabetes. J. Immunol. 181, 8323–8334 (2008). This report describes the use of CLR ligands as a vaccination approach to prevent autoimmunity.

    Article  CAS  PubMed  Google Scholar 

  81. Goodridge, H. S. et al. Differential use of CARD9 by dectin-1 in macrophages and dendritic cells. J. Immunol. 182, 1146–1154 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Sancho, D. et al. Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J. Clin. Invest 118, 2098–2110 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194, 769–780 (2001). This is the first study to show that targeting of CLRs in vivo induces antigen-specific tolerance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Merad, M., Ginhoux, F. & Collin, M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nature Rev. Immunol. 8, 935–947 (2008).

    Article  CAS  Google Scholar 

  85. Appelmelk, B. J. et al. Carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells. J. Immunol. 170, 1635–1639 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Bergman, M. P. et al. Helicobacter pylori modulates the T helper cell 1/T helper cell 2 balance through phase-variable interaction between lipopolysaccharide and DC-SIGN. J. Exp. Med. 200, 979–990 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Smits, H. H. et al. Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J. Allergy Clin. Immunol. 115, 1260–1267 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. León, B., López-Bravo, M. & Ardavín, C. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26, 519–531 (2007).

    Article  PubMed  CAS  Google Scholar 

  89. van Liempt, E. et al. Schistosoma mansoni soluble egg antigens are internalized by human dendritic cells through multiple C-type lectins and suppress TLR-induced dendritic cell activation. Mol. Immunol. 44, 2605–2615 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Smith, A. L. et al. Leukocyte-specific protein 1 interacts with DC-SIGN and mediates transport of HIV to the proteasome in dendritic cells. J. Exp. Med. 204, 421–430 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tassaneetrithep, B. et al. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J. Exp. Med. 197, 823–829 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. de Witte, L. et al. DC-SIGN and CD150 have distinct roles in transmission of measles virus from dendritic cells to T-lymphocytes. PLoS Pathog. 4, e1000049 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Marzi, A. et al. DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J. Virol. 78, 12090–12095 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. de Witte, L. et al. Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nature Med. 13, 367–371 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Hunger, R. E. et al. Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. J. Clin. Invest. 113, 701–708 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. van Vliet, S. J., Saeland, E. & van Kooyk, Y. Sweet preferences of MGL: carbohydrate specificity and function. Trends Immunol. 29, 83–90 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Inui, M. et al. Signal adaptor DAP10 associates with MDL-1 and triggers osteoclastogenesis in cooperation with DAP12. Proc. Natl Acad. Sci. USA 106, 4816–4821 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Xu, S., Huo, J., Lee, K. G., Kurosaki, T. & Lam, K. P. Phospholipase Cγ2 is critical for dectin-1-mediated Ca2+ flux and cytokine production in dendritic cells. J. Biol. Chem. 284, 7038–7046 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chaipan, C. et al. DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets. J. Virol. 80, 8951–8960 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fuller, G. L. J. et al. The C-type lectin receptors CLEC-2 and dectin-1, but not DC-SIGN, signal via a novel YXXL-dependent signalling cascade. J. Biol. Chem. 282, 12397–12409 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Pleines, I. et al. Rac1 is essential for phospholipase C-γ2 activation in platelets. Eur. J. Physiol. 457, 1173–1185 (2008).

    Article  CAS  Google Scholar 

  102. Caminschi, I. et al. The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood 112, 3264–3273 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hoffmann, S. C. et al. Identification of CLEC12B, an inhibitory receptor on myeloid cells. J. Biol. Chem. 282, 22370–22375 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Gazi, U. & Martinez-Pomares, L. Influence of the mannose receptor in host immune responses. Immunobiol. 21 Jan 2009 (doi: 10.1016/j.imbio.2008.11.004).

    Article  CAS  PubMed  Google Scholar 

  105. Miller, J. L. et al. The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog. 4, e17 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Zhang, J. et al. Cdc42 and RhoB activation are required for mannose receptor-mediated phagocytosis by human alveolar macrophages. Mol. Biol. Cell 16, 824–834 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the Host–Pathogen Interactions group for their valuable input. S.I.G. and T.B.H.G. are supported by the Dutch Asthma Foundation (grant number 3.2.03.39) and the Dutch Scientific Research program (grant number NWO VIDI 917-46-367), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teunis B. H. Geijtenbeek.

Related links

Related links

FURTHER INFORMATION

Teunis B. H. Geijtenbeek's homepage

Glossary

T helper (TH) cell

A T cell subset that secretes a distinct set of cytokines after activation, which occurs through the ligation of the T cell receptor with its cognate ligand (peptide–MHC complex), together with the recognition of the appropriate co-stimulatory molecules. Naive TH cells differentiate into TH1, TH2 or TH17 cells, depending on the cytokines and co-stimulatory molecules presented to them by antigen-presenting cells.

Regulatory T cell

A T cell belonging to a specialized subset of CD4+ T cells that suppresses immune responses to maintain tolerance to antigens, including self antigens.

Pathogen-associated molecular pattern

A small conserved molecular motif that is consistently found on pathogens; for example, lipopolysaccharides, carbohydrate moieties, double-stranded RNA and unmethylated DNA motifs.

Tonic calcium signalling

Signalling that is characterized by sustained increased basal intracellular calcium levels, which induces constitutive calcineurin activity. Tonic calcium signalling occurs as a result of exposure of ITAM-coupled receptors to low-avidity ligands.

Canonical NF-κB pathway

A pathway that involves the activation of IκB kinase-β (IKKβ), which leads to phosphorylation-induced proteolysis of inhibitor of NF-κB (IκB) and consequent nuclear translocation of the nuclear factor-κB (NF-κB) subunits p65, REL and p50.

Non-canonical NF-κB pathway

A pathway that involves the activation of IκB kinase-α (IKKα) by NF-κB-inducing kinase (NIK), which results in the processing of the nuclear factor-κB (NF-κB) subunits p100 to p52 and consequent formation of RelB–p52 dimers, which translocate into the nucleus and activate gene transcription.

Tolerance

A state of lymphocyte non-responsiveness to antigen. The term implies an active process, not simply a passive lack of response.

Systemic lupus erythematosus

(SLE). An autoimmune disease in which autoantibodies that are specific for DNA, RNA or proteins associated with nucleic acids form immune complexes that damage small blood vessels, especially in the kidney. Patients with SLE generally have abnormal B and T cell function.

Rheumatoid arthritis

An autoimmune disease that leads to chronic inflammation in the joints and subsequent destruction of the cartilage and erosion of the bone. It is divided into two main phases: initiation and establishment of autoimmunity to collagen-rich joint components, and later events associated with the evolving destructive inflammatory processes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geijtenbeek, T., Gringhuis, S. Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol 9, 465–479 (2009). https://doi.org/10.1038/nri2569

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2569

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing