Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

STING: infection, inflammation and cancer

Key Points

  • Stimulator of interferon genes (STING) is activated by binding to cyclic dinucleotides (CDNs), which results in potent cytokine production. CDNs are produced by certain intracellular bacteria and are generated by the cyclic GMP–AMP synthase (cGAS) following binding to cytosolic DNA species, such as viral DNA.

  • STING-inducible innate immune molecules are essential for protection of the host against pathogens and are important for the stimulation of adaptive immunity.

  • Self-DNA, for example from the nucleus or mitochondria, can leak into the cytosolic compartment and stimulate STING activity to cause autoinflammatory disease. Certain mutations in the gene encoding STING can cause the protein to become permanently active and similarly induce autoinflammatory responses.

  • STING can be activated in phagocytes by DNA released from engulfed tumour cells and drive the production of cytokines necessary for generating robust antitumour T cell responses.

  • DNA-damaging agents can cause the release of nuclear DNA into the cytosol that stimulates STING-dependent cytokine production and phagocyte infiltration. This may be essential for eliminating damaged cells and generating antitumour T cell responses, but chronic stimulation may also promote inflammation-aggravated cancer.

  • STING agonists exert potent antitumour activity and may be effective, novel adjuvants in vaccine formulations. In contrast, inhibitors of STING signalling may be beneficial for the treatment of autoinflammatory disease, such as systemic lupus erythematosus (SLE), Aicardi–Goutières syndrome (AGS) and STING-associated vasculopathy with onset in infancy (SAVI).

Abstract

The rapid detection of microbial agents is essential for the effective initiation of host defence mechanisms against infection. Understanding how cells detect cytosolic DNA to trigger innate immune gene transcription has important implications — not only for comprehending the immune response to pathogens but also for elucidating the causes of autoinflammatory disease involving the sensing of self-DNA and the generation of effective antitumour adaptive immunity. The discovery of the STING (stimulator of interferon genes)-controlled innate immune pathway, which mediates cytosolic DNA-induced signalling events, has recently provided important insights into these processes, opening the way for the development of novel immunization regimes, as well as therapies to treat autoinflammatory disease and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STING-dependent innate immune signalling.
Figure 2: STING signalling is essential for anti-pathogen host defence.
Figure 3: STING in autoinflammatory disease.
Figure 4: STING control of tumour development.

Similar content being viewed by others

References

  1. Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008). This is the first report on the discovery of STING as an essential innate immune regulator.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ishikawa, H., Ma, Z. & Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788–792 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burdette, D. L. et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515–518 (2011). This report demonstrates that CDNs bind to and activate STING.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sauer, J. D. et al. The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infect. Immun. 79, 688–694 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Ahn, J. & Barber, G. N. Self-DNA, STING-dependent signaling and the origins of autoinflammatory disease. Curr. Opin. Immunol. 31, 121–126 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Woo, S. R., Corrales, L. & Gajewski, T. F. The STING pathway and the T cell-inflamed tumor microenvironment. Trends Immunol. 36, 250–256 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barber, G. N. STING-dependent cytosolic DNA sensing pathways. Trends Immunol. 35, 88–93 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Zhong, B. et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29, 538–550 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Jin, L. et al. MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals. Mol. Cell. Biol. 28, 5014–5026 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Woodward, J. J., Iavarone, A. T. & Portnoy, D. A. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328, 1703–1705 (2010). This paper reports that CDNs from bacteria activate innate immune signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013). This study shows that cGAS is a synthase that binds dsDNA to generate STING-activating CDNs.

    Article  CAS  PubMed  Google Scholar 

  12. Diner, E. J. et al. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep. 3, 1355–1361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ablasser, A. et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498, 380–384 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Abe, T. et al. STING recognition of cytoplasmic DNA instigates cellular defense. Mol. Cell 50, 5–15 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Cai, X., Chiu, Y. H. & Chen, Z. J. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol. Cell 54, 289–296 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Saitoh, T. et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc. Natl Acad. Sci. USA 106, 20842–20846 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Konno, H., Konno, K. & Barber, G. N. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 155, 688–698 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Kumar, H., Kawai, T. & Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 30, 16–34 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Franchi, L., Munoz-Planillo, R. & Nunez, G. Sensing and reacting to microbes through the inflammasomes. Nat. Immunol. 13, 325–332 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ahn, J., Gutman, D., Saijo, S. & Barber, G. N. STING manifests self DNA-dependent inflammatory disease. Proc. Natl Acad. Sci. USA 109, 19386–19391 (2012). This report demonstrates that STING activation in phagocytes following engulfment of dead cells is responsible for self-DNA-induced inflammatory disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gomes, L. C. & Dikic, I. Autophagy in antimicrobial immunity. Mol. Cell 54, 224–233 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Nyathi, Y., Wilkinson, B. M. & Pool, M. R. Co-translational targeting and translocation of proteins to the endoplasmic reticulum. Biochim. Biophys. Acta 1833, 2392–2402 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Henault, J. et al. Noncanonical autophagy is required for type I interferon secretion in response to DNA-immune complexes. Immunity 37, 986–997 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, S. et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347, aaa2630 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Alers, S., Loffler, A. S., Wesselborg, S. & Stork, B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol. Cell. Biol. 32, 2–11 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, X., Wang, Q., Pan, Y. & Wang, C. Sensing and responding to cytosolic viruses invasions: An orchestra of kaleidoscopic ubiquitinations. Cytokine Growth Factor Rev. 26, 379–387 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Yarbrough, M. L. et al. Primate-specific miR-576-3p sets host defense signalling threshold. Nat. Commun. 5, 4963 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Lam, E., Stein, S. & Falck-Pedersen, E. Adenovirus detection by the cGAS/STING/TBK1 DNA sensing cascade. J. Virol. 88, 974–981 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sunthamala, N. et al. E2 proteins of high risk human papillomaviruses down-modulate STING and IFN-κ transcription in keratinocytes. PLoS ONE 9, e91473 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ablasser, A. et al. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503, 530–534 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lau, L., Gray, E. E., Brunette, R. L. & Stetson, D. B. DNA tumor virus oncogenes antagonize the cGAS-STING DNA sensing pathway. Science 350, 568–571 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Gao, D. et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341, 903–906 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Lahaye, X. et al. The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. Immunity 39, 1132–1142 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Herzner, A. M. et al. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Nat. Immunol. 16, 1025–1033 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yoh, S. M. et al. PQBP1 is a proximal sensor of the cGAS-dependent innate response to HIV-1. Cell 161, 1293–1305 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mankan, A. K. et al. Cytosolic RNA:DNA hybrids activate the cGAS-STING axis. EMBO J. 33, 2937–2946 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yan, N., Regalado-Magdos, A. D., Stiggelbout, B., Lee-Kirsch, M. A. & Lieberman, J. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat. Immunol. 11, 1005–1013 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Booiman, T., Setiawan, L. C. & Kootstra, N. A. Genetic variation in Trex1 affects HIV-1 disease progression. AIDS 28, 2517–2521 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Bridgeman, A. et al. Viruses transfer the antiviral second messenger cGAMP between cells. Science 349, 1228–1232 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gentili, M. et al. Transmission of innate immune signaling by packaging of cGAMP in viral particles. Science 349, 1232–1236 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Zeng, M. et al. MAVS, cGAS, and endogenous retroviruses in T-independent B cell responses. Science 346, 1486–1492 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Inoue, T. & Tsai, B. How viruses use the endoplasmic reticulum for entry, replication, and assembly. Cold Spring Harb. Perspect. Biol. 5, a013250 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Aguirre, S. et al. DENV inhibits type I IFN production in infected cells by cleaving human STING. PLoS Pathog. 8, e1002934 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li, X. D. et al. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341, 1390–1394 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Schoggins, J. W. et al. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505, 691–695 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Maringer, K. & Fernandez-Sesma, A. Message in a bottle: lessons learned from antagonism of STING signalling during RNA virus infection. Cytokine Growth Factor Rev. 25, 669–679 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kalamvoki, M. & Roizman, B. HSV-1 degrades, stabilizes, requires, or is stung by STING depending on ICP0, the US3 protein kinase, and cell derivation. Proc. Natl Acad. Sci. USA 111, E611–E617 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhou, Q. et al. The ER-associated protein ZDHHC1 is a positive regulator of DNA virus-triggered, MITA/STING-dependent innate immune signaling. Cell Host Microbe 16, 450–461 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Luecke, S. & Paludan, S. R. Innate recognition of alphaherpesvirus DNA. Adv. Virus Res. 92, 63–100 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Mitzel, D. N., Lowry, V., Shirali, A. C., Liu, Y. & Stout-Delgado, H. W. Age-enhanced endoplasmic reticulum stress contributes to increased Atg9A inhibition of STING-mediated IFN-β production during Streptococcus pneumoniae infection. J. Immunol. 192, 4273–4283 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Prantner, D., Darville, T. & Nagarajan, U. M. Stimulator of IFN gene is critical for induction of IFN-β during Chlamydia muridarum infection. J. Immunol. 184, 2551–2560 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Storek, K. M., Gertsvolf, N. A., Ohlson, M. B. & Monack, D. M. cGAS and Ifi204 cooperate to produce type I IFNs in response to Francisella infection. J. Immunol. 194, 3236–3245 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Watson, R. O., Manzanillo, P. S. & Cox, J. S. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150, 803–815 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dey, B. et al. A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis. Nat. Med. 21, 401–406 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Archer, K. A., Durack, J. & Portnoy, D. A. STING-dependent type I IFN production inhibits cell-mediated immunity to Listeria monocytogenes. PLoS Pathog. 10, e1003861 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Centers for Disease Control and Prevention. Prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation—United States, 2010–2012. MMWR Morb. Mortal. Wkly Rep. 62, 869–873 (2013).

  57. Nagata, S. & Kawane, K. Autoinflammation by endogenous DNA. Adv. Immunol. 110, 139–161 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Janko, C. et al. Inflammatory clearance of apoptotic remnants in systemic lupus erythematosus (SLE). Autoimmun. Rev. 8, 9–12 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Martinez Valle, F., Balada, E., Ordi-Ros, J. & Vilardell-Tarres, M. DNase 1 and systemic lupus erythematosus. Autoimmun Rev. 7, 359–363 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Rice, G. I., Rodero, M. P. & Crow, Y. J. Human disease phenotypes associated with mutations in TREX1. J. Clin. Immunol. 35, 235–243 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Gall, A. et al. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36, 120–131 (2012). This study shows that STING activation is responsible for TREX1-mediated autoinflamatory disease and plausibly AGS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ahn, J., Ruiz, P. & Barber, G. N. Intrinsic self-DNA triggers inflammatory disease dependent on STING. J. Immunol. 193, 4634–4642 (2014). This report demonstrates that, in the absence of TREX1, self-DNA in macrophages can activate STING and cause inflammatory diseases, such as AGS.

    Article  CAS  PubMed  Google Scholar 

  63. Yang, Y. G., Lindahl, T. & Barnes, D. E. Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 131, 873–886 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Pereira-Lopes, S. et al. The exonuclease Trex1 restrains macrophage proinflammatory activation. J. Immunol. 191, 6128–6135 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Ablasser, A. et al. TREX1 deficiency triggers cell-autonomous immunity in a cGAS-dependent manner. J. Immunol. 192, 5993–5997 (2014). This study reports that cGAS is involved in STING-dependent autoinflammatory disease that is triggered by TREX1 deficiency.

    Article  CAS  PubMed  Google Scholar 

  66. Gehrke, N. et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity 39, 482–495 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Kukat, C. & Larsson, N. G. mtDNA makes a U-turn for the mitochondrial nucleoid. Trends Cell Biol. 23, 457–463 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553–557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. White, M. J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rongvaux, A. et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159, 1563–1577 (2014). References 69 and 70 show that mitochondrial DNA that has leaked into the cytosol may activate STING-dependent inflammatory responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Creagh, E. M. Caspase crosstalk: integration of apoptotic and innate immune signalling pathways. Trends Immunol. 35, 631–640 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Perl, A., Hanczko, R. & Doherty, E. Assessment of mitochondrial dysfunction in lymphocytes of patients with systemic lupus erythematosus. Methods Mol. Biol. 900, 61–89 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Nowarski, R., Gagliani, N., Huber, S. & Flavell, R. A. Innate immune cells in inflammation and cancer. Cancer Immunol. Res. 1, 77–84 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Salcedo, R., Cataisson, C., Hasan, U., Yuspa, S. H. & Trinchieri, G. MyD88 and its divergent toll in carcinogenesis. Trends Immunol. 34, 379–389 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Swann, J. B. et al. Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc. Natl Acad. Sci. USA 105, 652–656 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ahn, J. et al. Inflammation-driven carcinogenesis is mediated through STING. Nat. Commun. 5, 5166 (2014). This study shows that DNA-damaging agents can cause DNA leakage in the cytosol to activate STING-mediated inflammatory events and drive skin cancer.

    Article  CAS  PubMed  Google Scholar 

  77. Salcedo, R. et al. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J. Exp. Med. 207, 1625–1636 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Huber, S. et al. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 491, 259–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Irrazabal, T., Belcheva, A., Girardin, S. E., Martin, A. & Philpott, D. J. The multifaceted role of the intestinal microbiota in colon cancer. Mol. Cell 54, 309–320 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Ahn, J., Konno, H. & Barber, G. N. Diverse roles of STING-dependent signaling on the development of cancer. Oncogene 34, 5302–5308 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhu, Q. et al. Cutting edge: STING mediates protection against colorectal tumorigenesis by governing the magnitude of intestinal inflammation. J. Immunol. 193, 4779–4782 (2014). References 80 and 81 show a protective role for STING in recognizing DNA damage and facilitating wound repair in the colon.

    Article  CAS  PubMed  Google Scholar 

  82. Gajewski, T. F., Schreiber, H. & Fu, Y. X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Woo, S. R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014). This study shows that antitumour T cell responses require the activation of STING in phagocytes that have engulfed tumour cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014). This study shows that radiation-induced tumour cell death stimulates STING-dependent antitumour T cell responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Klarquist, J. et al. STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells. J. Immunol. 193, 6124–6134 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Roberts, Z. J. et al. The chemotherapeutic agent DMXAA potently and specifically activates the TBK1-IRF-3 signaling axis. J. Exp. Med. 204, 1559–1569 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Corrales, L. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 11, 1018–1030 (2015). This study demonstrates that the use of STING agonists can exert potent antitumour therapeutic effects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fu, J. et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci. Transl Med. 7, 283ra52 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wang, Z. & Celis, E. STING activator c-di-GMP enhances the anti-tumor effects of peptide vaccines in melanoma-bearing mice. Cancer Immunol. Immunother. 64, 1057–1066 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ohkuri, T., Ghosh, A., Kosaka, A., Sarkar, S. N. & Okada, H. Protective role of STING against gliomagenesis: rational use of STING agonist in anti-glioma immunotherapy. Oncoimmunology 4, e999523 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zitvogel, L., Galluzzi, L., Smyth, M. J. & Kroemer, G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 39, 74–88 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Hartlova, A. et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity 42, 332–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Kondo, T. et al. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proc. Natl Acad. Sci. USA 110, 2969–2974 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lemos, H., Huang, L., McGaha, T. & Mellor, A. L. STING, nanoparticles, autoimmune disease and cancer: a novel paradigm for immunotherapy? Expert Rev. Clin. Immunol. 11, 155–165 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Zhang, H. et al. Cell-free tumor microparticle vaccines stimulate dendritic cells via cGAS/STING signaling. Cancer Immunol. Res. 3, 196–205 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Dubensky, T. W. Jr., Kanne, D. B. & Leong, M. L. Rationale, progress and development of vaccines utilizing STING-activating cyclic dinucleotide adjuvants. Ther. Adv. Vaccines 1, 131–143 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gao, P. et al. Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. Cell 154, 748–762 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jin, L. et al. Identification and characterization of a loss-of-function human MPYS variant. Genes Immun. 12, 263–269 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Prantner, D. et al. 5,6-Dimethylxanthenone-4-acetic acid (DMXAA) activates stimulator of interferon gene (STING)-dependent innate immune pathways and is regulated by mitochondrial membrane potential. J. Biol. Chem. 287, 39776–39788 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014). This paper reports that mutations in TMEM173 that cause constitutive activity of STING can induce inflammatory disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jeremiah, N. et al. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J. Clin. Invest. 124, 5516–5520 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lemos, H. et al. Activation of the STING adaptor attenuates experimental autoimmune encephalitis. J. Immunol. 192, 5571–5578 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Wu, X. et al. Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING. Nucleic Acids Res. 42, 8243–8257 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mozzi, A. et al. OASes and STING: adaptive evolution in concert. Genome Biol. Evol. 7, 1016–1032 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yi, G. et al. Single nucleotide polymorphisms of human STING can affect innate immune response to cyclic dinucleotides. PLoS ONE 8, e77846 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen N. Barber.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Glossary

Stimulator of interferon genes

(STING). An endoplasmic reticulum-associated protein that binds to cyclic dinucleotides or cytosolic DNA to trigger cytokine production.

Cyclic dinucleotides

(CDNs). Secondary messengers secreted by certain bacteria, such as Listeria monocytogenes, or generated by cyclic GMP–AMP synthase (cGAS) following binding to cytosolic DNA.

Systemic lupus erythematosus

(SLE). An autoimmune disease in which autoantibodies specific for DNA, RNA or proteins associated with nucleic acids form immune complexes that damage small blood vessels, especially in the kidneys. Patients with SLE generally have abnormal B and T cell function. SLE can be associated with hyperproduction of type I interferons.

Aicardi–Goutières syndrome

(AGS). A neurodegenerative disorder that can be caused by STING-dependent cytokine hyperproduction owing to mutations in genes such as TREX1 (three-prime repair exonuclease 1).

Cyclic GMP–AMP synthase

(cGAS). A cellular protein that binds to cytosolic DNA species and generates stimulator of interferon genes (STING)-activating cyclic dinucleotides.

Oligoadenylate synthetase 1

(OAS1). A double-stranded RNA sensor that, in the presence of ATP, generates 2′,5′-linked oligoadenylates, which can activate RNase L-mediated viral RNA degradation.

Translocon-associated protein

(TRAP). A complex of proteins that shunt proteins destined for N-linked glycosylation and secretion into the endoplasmic reticulum after translation.

Immune complexes

Complexes of antigen (including DNA) bound to antibody and, sometimes, components of the complement system. The levels of immune complexes are increased in many autoimmune disorders, in which they become deposited in tissues and cause tissue damage.

MicroRNAs

(miRNAs). Small RNA molecules that regulate the expression of genes by binding to the 3′ untranslated regions (3′ UTR) of specific mRNAs.

Three-prime repair exonuclease 1

(TREX1). A DNase that degrades self-DNA species that can otherwise chronically activate stimulator of interferon genes (STING) signalling.

Damage-associated molecule pattern

(DAMP). A cellular molecule, such as uric acid, ATP and heat shock proteins, that can activate the inflammatory response in the absence of infection.

Mitochondrial outer-membrane permeabilization

(MOMP). Permeablization induced by virus infection and/or apoptosis to release mitochondrial DNA that could conceivably activate stimulator of interferon genes (STING).

Angiogenesis

The development of new blood vessels from existing blood vessels. It is frequently associated with tumour development and inflammation.

Checkpoint blockade

The targeting of T cell co-inhibitory receptors, such as cytotoxic T lymphocyte antigen 4 (CTLA4) or programmed cell death protein 1 (PD1), by antibodies that have clinical activity in multiple cancer types.

Cross-presentation

The initiation of a CD8+ T cell response to an antigen that is not present within antigen-presenting cells (APCs). This exogenous antigen must be taken up by APCs and then re-routed to the MHC class I pathway of antigen presentation.

Ataxia telangiectasia

A neurodegenerative disease caused by mutations in the ATM (ataxia-telangiectasia mutated) gene, the product of which is essential for the recognition and repair of DNA breaks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barber, G. STING: infection, inflammation and cancer. Nat Rev Immunol 15, 760–770 (2015). https://doi.org/10.1038/nri3921

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3921

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing