The Need for a Standardized Methodology for Quantitative Assessment of Natural and Anthropogenic Land Subsidence: The Agosta (Italy) Gas Field Case
Abstract
:1. Introduction
2. Geological and Geomorphological Framework
3. Land Subsidence Assessment: Two Different Methods
4. Discussion
5. Conclusions and Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brand, G.B.M.; de Bruijne, A.J.T.; de Min, E.J.; Ringelberg, M.J. Modelling Regional and Local Surface Subsidence Due to Compaction of Unconsolidated Sediments. In Proceedings of the Sixth International Symposium Land Subsidence, Ravenna, Italy, 24–29 September 2000; Carbognin, L., Gambolati, G., Johnson, A.I., Eds.; Volume I and II, pp. 384 and 433. [Google Scholar]
- Prince, K.R.; Sonenshein, R.; Karavitis, G. International land subsidence data base. In Proceedings of the Technical Meeting, US Geological Survey Subsidence Interest Group Conference, Galveston, TX, USA, 27–29 November 2001; Open-File Report 03–308. pp. 147–162. [Google Scholar]
- Hu, R.L.; Yue, Z.Q.; Wang, L.C.; Wang, S.J. Review on current status and challenging issues of land subsidence in China. Eng. Geol. 2004, 76, 65–77. [Google Scholar] [CrossRef]
- Vonhögen, L.M.; Doornenbal, P.J.; De Lange, G.; Fokker, P.A.; Gunnink, J.L. Subsidence in the Holocene delta of The Netherlands. In Proceedings of the EISOLS 2010, Land Subsidence, Associated Hazards and the Role of Natural Resources Development, Querétaro, Mexico, 17–22 October 2010; IAHS Publ. 339. pp. 158–163. [Google Scholar]
- Teatini, P.; Tosi, L.; Strozzi, T. Quantitative evidence that compaction of Holocene sediments drives the present land subsidence of the Po Delta, Italy. J. Geophys. Res. 2011, 116, B08407. [Google Scholar] [CrossRef]
- Ireland, L.; Poland, J.F.; Riley, F.S. Land Subsidence in the San Joaquin Valley, California, as of 1980. U.S. Geological Survey Professional Paper 437-I.; U.S. Government Printing Office: Washington, DC, USA, 1984. [Google Scholar]
- Bell, J.W.; Amelung, F.; Ramelli, A.R.; Blewitt, G. Land Subsidence in Las Vegas, Nevada, 1935–2000: New Geodetic Data Show Evolution, Revised Spatial Patterns, and Reduced Rates. Environ. Eng. Geosci. 2002, 8, 155–174. [Google Scholar] [CrossRef]
- Gambolati, G.; Teatini, P.; Ferronato, M. Anthropogenic Land Subsidence. In Encyclopedia of Hydrological Sciences; Anderson, M.G., McDonnell, J.J., Eds.; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Cabral Cano, E.; Dixon, T.H.; Miralles-Wilhelm, F.; Diaz-Molina, O.; Sanchez-Zamora, O.; Carande, R.E. Space geodetic imaging of rapid ground subsidence in Mexico City. Gsa Bull. 2008, 120, 1556–1566. [Google Scholar] [CrossRef]
- Galloway, D.L.; Sneed, M. Analysis and simulation of regional subsidence accompanying groundwater abstraction and compaction of susceptible aquifer systems in the USA. Boletín De La Soc. Geológica Mex. Número Espec. Geoquímica Ambiental. 2013, 65, 123–136. [Google Scholar] [CrossRef]
- Ochoa-Gonzalez, G.H.; Carreon-Freyre, D.; Franceschini, A.; Cerca, M.; Teatini, P. Overexploitation of groundwater resources in the faulted basin of Querétaro, Mexico: A 3D deformation and stress analysis. Eng. Geol. 2018, 245, 192–206. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef] [Green Version]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Werner, C.; Wegmuller, U.; Wiesmann, A.; Strozzi, T.; Sensing, G.; Muri, S. Interferometric point target analysis with JERS-1 L-band SAR data. In Proceedings of the IGARSS, Toulouse, France, 21–25 July 2003; pp. 4359–4361. [Google Scholar]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using In-SAR persistent scatterers. Geophys. Res. Lett. 2004, 31, L23611. [Google Scholar] [CrossRef]
- Manunta, M.; Berardino, P.; Sansosti, E.; Lanari, R.; Mora, O.; Mallorqui, J.J. A small baseline approach for investigating deformation on full resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar]
- Crosetto, M.; Crippa, B.; Biescas, E. Early detection and in-depth analysis of deformation phenomena by radar interferometry. Eng. Geol. 2005, 79, 81–91. [Google Scholar] [CrossRef]
- Kampes, B.M. Radar Interferometry: Persistent Scatterer Technique; Springer: New York, NY, USA, 2006. [Google Scholar]
- Lanari, R.; Casu, F.; Manzo, M.; Zeni, G.; Berardino, P.; Manunta, M.; Pepe, A. An overview of the small baseline subset algorithm: A DInSAR technique for surface deformation analysis. Pure Appl. Geophys. 2007, 164, 637–661. [Google Scholar] [CrossRef]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35, L16302. [Google Scholar] [CrossRef]
- Sansosti, E.; Berardino, P.; Bonano, M.; Calo, F.; Castaldo, R.; Casu, F.; Manunta, M.; Manzo, M.; Pepe, A.; Pepe, S.; et al. How second generation SAR systems are impacting the analysis of ground deformation. Int. J. Appl. Earth Obs. 2014, 28, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent Scatterer Interferometry: A review. ISPRS J. Photogr. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Colesanti, C.; Le Mouelic, S.; Bennani, M.; Raucoules, D.; Carnec, C.; Ferretti, A. Detection of mining related ground instabilities using the Permanent Scatterers technique—A case study in the east of France. Int. J. Remote Sens. 2005, 26, 201–207. [Google Scholar] [CrossRef]
- Comerci, V.; Capelletti, S.; Michetti, A.M.; Rossi, S.; Serva, L.; Vittori, E. Land subsidence and Late Glacial environmental evolution of the Como urban area (Northern Italy). Quat. Int. 2007, 173–174, 67–86. [Google Scholar] [CrossRef]
- Herrera, G.; Tomás, R.; López-Sánchez, J.M.; Delgado, J.; Mallorqui, J.J.; Duque, S.; Mulas, J. Advanced DInSAR analysis on mining areas: La Union case study (Murcia, SE Spain). Eng. Geol. 2007, 90, 148–159. [Google Scholar] [CrossRef] [Green Version]
- Teatini, P.; Strozzi, T.; Tosi, L.; Wegmuller, U.; Werner, C.; Carbognin, L. Assessing short- and long-time displacements in the Venice coastland by synthetic aperture radar interferometric point target analysis. Geophys. Res. 2007, 112, F01012. [Google Scholar] [CrossRef]
- Maron, K.P.; Bourne, S.; Klemm, H.; van den Beukel, A.; McGillivray, P. Insights from monitoring of heavy oil production in Peace River, Canada. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, SPE 118244, Abu Dhabi, United Arab Emirates, 3–6 November 2008. [Google Scholar]
- Stramondo, S.; Bozzano, F.; Marra, F.; Wegmuller, U.; Cinti, F.R.; Moro, M.; Saroli, M. Subsidence induced by urbanization in the city of Rome detected by advanced InSAR. Remote Sens. Environ. 2008, 112, 3160–3172. [Google Scholar] [CrossRef]
- Herrera, G.; Fernandez, J.A.; Tomas, R.; Cooksley, G.; Mulas, J. Advanced interpretation of subsidence in Murcia (SE Spain) using A-DInSAR data—Modelling and validation. Nat. Hazards Earth Syst. Sci. 2009, 9, 647–661. [Google Scholar] [CrossRef]
- Klemm, H.; Quseimi, I.; Novali, F.; Ferretti, A.; Tamburini, A. Monitoring horizontal and vertical surface deformation over a hydrocarbon reservoir by PSInSAR. First Break 2010, 28, 29–37. [Google Scholar] [CrossRef]
- Zhao, Q.; Lin, H.; Gao, W.; Zebker, H.A.; Chen, A.; Yeung, K. InSAR detection of residual settlement of an ocean reclamation engineering project: A case study of Hong Kong International Airport. J. Oceanogr. 2011, 67, 415–426. [Google Scholar] [CrossRef]
- Cigna, F.; Osmanoğlu, B.; Cabral-Cano, E.; Dixon, T.H.; Ávila-Olivera, J.A.; Garduño-Monroy, V.H.; DeMets, C.; Wdowinski, S. Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: A case study in Morelia, Mexico. Rem. Sens. Environ. 2012, 117, 146–161. [Google Scholar] [CrossRef]
- Tosi, L.; Teatini, P.; Strozzi, T. Natural versus anthropogenic subsidence of Venice. Sci. Rep. 2013, 3, 2710. [Google Scholar] [CrossRef]
- Comerci, V.; Vittori, E.; Cipolloni, C.; Di Manna, P.; Guerrieri, L.; Nisio, S.; Succhiarelli, C.; Ciuffreda, M.; Bertoletti, E. Geohazards monitoring in Rome from InSAR and in-situ data: Outcomes of the PanGeo Project. Pure Appl. Geophys. 2015, 172, 2997–3028. [Google Scholar] [CrossRef]
- Hung, W.-C.; Hwang, C.; Chen, Y.-A.; Zhang, L.; Chen, K.-H.; Wei, S.-H.; Huang, D.-R.; Lin, S.-H. Land Subsidence in Chiayi, Taiwan, from Compaction Well, Leveling and ALOS/PALSAR: Aquaculture-Induced Relative Sea Level Rise. Remote Sens. 2018, 10, 40. [Google Scholar] [CrossRef]
- Eni S.p.A. Appendice C—Studio e Piano di Monitoraggio Subsidenza. In Studio di impatto ambientale. Istanza di Concessione di Coltivazione Agosta. Messa in produzione del pozzo Agosta 1 Dir. Giugno 2015. SICS-210-APP-C. Available online: http://www.va.minambiente.it/it-IT/Oggetti/Documentazione/1552/2515?Testo=Appendice+C+%E2%80%93+Studio+e+Piano+di+Monitoraggio+Subsidenza.&RaggruppamentoID=&x=17&y=14#form-cercaDocumentazione (accessed on 7 May 2019).
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Farolfi, G.; Bianchini, S.; Casagli, N. Integration of GNSS and Satellite InSAR Data: Derivation of Fine-Scale Vertical Surface Motion Maps of Po Plain, Northern Apennines, and Southern Alps, Italy. IEEE Trans. Geosci. Remote Sens. 2018, 57, 319–328. [Google Scholar] [CrossRef]
- Bekaert, D.P.S.; Segall, P.; Wright, T.J.; Hooper, A.J. A network inversion filter combining GNSS and InSAR for tectonic slip modeling. J. Geophys. Res. Solid Earth 2016, 121, 2069–2086. [Google Scholar] [CrossRef]
- Komac, M.; Holley, R.; Mahapatra, P.; van der Marel, H.; Bavec, M. Coupling of GPS/GNSS and radar interferometric data for a 3D surface displacement monitoring of landslides. Landslides 2015, 12, 241–257. [Google Scholar] [CrossRef]
- Simonetto, E.; Durand, S.; Burdack, J.; Polidori, L.; Morel, L.; Nicolas-Duroy, J. Combination of INSAR and GNSS measurements for ground displacement monitoring. Procedia Technol. 2014, 16, 192–198. [Google Scholar] [CrossRef]
- Carminati, E.; Doglioni, C.; Scrocca, D. Apennines subduction-related subsidence of Venice (Italy). Geoph. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Fantoni, R.; Franciosi, R. Tectono-sedimentary setting of the Po Plain and Adriatic Foreland. Rend. Lincei-Sci. Fis. Nat. 2010, 21, 197–209. [Google Scholar] [CrossRef]
- Pieri, M.; Groppi, G. Subsurface Geological Structure of the Po Plain; C.N.R.: Rome, Italy, 1981; p. 23. [Google Scholar]
- Cassano, E.; Anelli, L.; Fichera, R.; Cappelli, V. Pianura Padana: Interpretazione integrata di dati geofisici e geologici. In Proceedings of the 73° Congresso Società Geologica Italiana, Roma, Italy, 29 September–4 October 1986. [Google Scholar]
- Martelli, L.; Bonini, M.; Calabrese, L.; Corti, G.; Ercolessi, G.; Molinari, F.C.; Piccardi, L.; Pondrelli, S.; Sani, F.; Severi, P. Note Illustrative della Carta Sismotettonica della Regione Emilia Romagna ed aree limitrofe. In Carta sismotettonica della Regione Emilia-Romagna e aree limitrofe; Regione Emilia Romagna, Ed.; DREAM: Pratovecchio Stia (AR), Italy, 2017; p. 94. Available online: http://mappegis.regione.emilia-romagna.it/gstatico/documenti/sismotett_2016/Nota_Illustrativa.pdf (accessed on 17 May 2019).
- Bondesan, M. Quadro schematico dell’evoluzione geomorfologica olocenica del territorio compreso fra Adria e Ravenna. In Atti della tavola rotonda “Il delta del Po”, Bologna, Italy, 24 November 1982; Acc. Sci. dell’Ist. di Bologna: Bologna, Italy, 1985; pp. 23–36. [Google Scholar]
- Bondesan, M. L’area deltizia padana: Caratteri geografici e geomorfologici. In Il Parco del delta del Po: Studi ed immagini; 21 ff, 2 tabb; Spazio Libri Ed.: Ferrara, Italy, 1990; Volume 1, pp. 9–48. [Google Scholar]
- Simeoni, U.; Tessari, U.; Corbau, C.; Tosatto, O.; Polo, P.; Teatini, P. Impact of land subsidence due to residual gas production on surficial infrastructures: The Dosso degli Angeli field study (Ravenna, Northern Italy). Eng. Geol. 2017, 229. [Google Scholar] [CrossRef]
- Bitelli, G.; Bonsignore, F.; Unguendoli, M. Levelling and GPS networks to monitor ground subsidence in the Southern Po Valley. J. Geodyn. 2000, 30, 355–369. [Google Scholar] [CrossRef]
- Fiaschi, S.; Tessitore, S.; Bonì, R.; Di Martire, D.; Achilli, V.; Borgstrom, S.; Ibrahim, A.; Floris, M.; Meisina, C.; Ramondini, M.; et al. From ERS-1/2 to Sentinel-1: Two decades of subsidence monitored through A-DInSAR techniques in the Ravenna area (Italy). Giscience Rem. Sens. 2016. [Google Scholar] [CrossRef]
- MATTM Environmental Assessments and Authorizations. Available online: http://www.va.minambiente.it/en-GB/Oggetti/Info/1552 (accessed on 7 May 2019).
- Teatini, P.; Ferronato, M.; Gambolati, G.; Bertoni, W.; Gonella, M. A Century of Land Subsidence in Ravenna Italy. Environ. Geol. 2005, 47, 831–846. [Google Scholar] [CrossRef]
- Eni S.p.A. Allegato 6b. Analisi Geodinamica campo di Dosso degli Angeli e Agosta. In Integrazioni allo Studio di Impatto Ambientale. Luglio 2016. Available online: http://www.va.minambiente.it/it-IT/Oggetti/Documentazione/1552/2515?Testo=geodinamica&RaggruppamentoID=&x=11&y=12#form-cercaDocumentazione (accessed on 7 May 2019).
- Regione Emilia Romagna, ARPAE. Progetto integrato per la tutela dell’acquifero, la lotta alla subsidenza e alla erosione costiera. Studio della subsidenza tramite interferometria. Bologna, maggio 2003. Available online: https://www.arpae.it/cms3/documenti/subsidenza/Rel_autbacmarecchi.pdf (accessed on 16 May 2019).
- Regione Emilia Romagna, ARPAE. Rilievo della subsidenza nella Pianura Emiliano-Romagnola. Analisi Interferometrica. Bologna, maggio 2007. Available online: https://ambiente.regione.emilia-romagna.it/it/acque/approfondimenti/documenti/rilievo-della-subsidenza-nella-pianura-emiliano-romagnola (accessed on 16 May 2019).
- Regione Emilia Romagna, ARPAE. Rilievo della subsidenza nella Pianura Emiliano-Romagnola. Relazione Finale. Bologna, ottobre 2012. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwilqJ7Ss5_iAhW5KqYKHaM3C2MQFjAAegQIBBAB&url=https%3A%2F%2Fwww.arpae.it%2Fcms3%2Fdocumenti%2Fsubsidenza%2FRelfin_2012.pdf&usg=AOvVaw1J3MerGansNDGDRd5DiCyp (accessed on 16 May 2019).
- Regione Emilia Romagna, ARPA Ingegneria Ambientale. Misura della rete regionale di controllo della subsidenza, misura di linee della rete costiera non comprese nella rete regionale, rilievi batimetrici. Relazione finale. Bologna, ottobre 2001. Available online: https://www.arpae.it/cms3/documenti/subsidenza/Relfin_2001.PDF (accessed on 16 May 2019).
- Bitelli, G.; Bonsignore, F.; Pellegrino, I.; Vittuari, L. Evolution of the techniques for subsidence monitoring at regional scale: The case of Emilia-Romagna region (Italy). Proc. Iahs 2015, 372, 315–321. [Google Scholar] [CrossRef]
- Regione Emilia Romagna, ARPAE. Rilievo della subsidenza nella Pianura Emiliano-Romagnola. Seconda fase. Relazione finale. Bologna, aprile 2018. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwiT192PtJ_iAhXKwosBHa86A6MQFjAAegQIAhAB&url=https%3A%2F%2Fambiente.regione.emilia-romagna.it%2Fit%2Facque%2Fapprofondimenti%2Fdocumenti%2Frilievo-della-subsidenza-nella-pianura-emiliano-romagnola%2Fseconda-fase&usg=AOvVaw2J83kjuuI74JEdFMDikbFt (accessed on 16 May 2019).
- Marinkovic, P.; Ketelaar, G.; Van Leijen, F.; Hanssen, R. InSAR quality control: Analysis of five years of corner reflect or time series. In Proceedings of the FRINGE 2007 Workshop, Frascati, Italy, 26–30 November 2007; ESA SP-649. February 2008. [Google Scholar]
- Haghighi, M.; Motagh, M. Sentinel-1 InSAR over Germany: Large-Scale Interferometry, Atmospheric Effects, and Ground Deformation Mapping. ZFV 2017, 142, 245–256. [Google Scholar] [CrossRef]
- Regione Emilia Romagna. Delibera di Giunta Regionale n. 539 del 28/04/2017. Procedura di VIA Ministeriale-Parere in merito alla valutazione di impatto ambientale dell’istanza di concessione di coltivazione Agosta-messa in produzione del pozzo Agosta 1 dir” nel Comune di Comacchio (art. 25, comma 2 del D.lgs. 152/06). Bologna, Italy, 2017. Available online: http://www.va.minambiente.it/it-IT/Oggetti/Documentazione/1552/2515?Testo=66.67.%09Regione+Emilia+Romagna.+Delibera+di+Giunta+Regionale+n.+539+del+28%2F04%2F2017&RaggruppamentoID=&x=19&y=14#form-cercaDocumentazione (accessed on 16 May 2019).
- EUREF Permanent GNSS Network. Available online: http://epncb.eu/ (accessed on 7 May 2019).
- Bruyninx, C.; Araszkiewicz, A.; Brockmann, E.; Kenyeres, A.; Legrand, J.; Liwosz, T.; Mitterschiffthaler, P.; Pacione, R.; Söhne, W.; Völksen, C.; Villiger, A. International GNSS Service 2017 Technical Report; Villiger, A., Dach, R., Eds.; IGS Central Bureau and University of Bern, Bern Open Publishing: Bern, Switzerland, 2018; pp. 105–115. [Google Scholar] [CrossRef]
- Farolfi, G.; Maseroli, R.; Baroni, L.; Cauli, F. Final results of the Italian “Rete Dinamica Nazionale” (RDN) of Istituto Geografico Militare Italiano (IGMI) and its alignment to ETRF2000. In Proceedings of the Symposium EUREF 2009, Firenze, Italy, 27–29 May 2009; pp. 287–320. [Google Scholar]
- Maseroli, R. Evoluzione del Sistema Geodetico di Riferimento in Italia: La RDN2. Boll. Ass. It. Cart. 2015, 153, 19–44. [Google Scholar] [CrossRef]
- Barbarella, M.; Gandolfi, S.; Tavasci, L. Monitoring of the Italian GNSS Geodetic Reference Frame. In Advanced GNSS and 3D Spatial Techniques. New Lecture Notes in Geoinformation and Cartography; Cefalo, R., Zieliński, J., Barbarella, M., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Cenni, N.; Belardinelli, M.; Baldi, P.; Loddo, F.; Gandolfi, S.; Poluzzi, L.; Tavasci, L.; Mantovani, E.; Babbucci, D.; Viti, M. The present Italian kinematic pattern from GNSS data. In Proceedings of the 35th National Conference of GNGTS, Lecce, Italy, 22–24 November 2016. [Google Scholar]
- Combrinck, L.; Schmidt, M. Physical Site Specifications: Geodetic Site Monumentation. Position Paper. In Proceedings of the IGS Network Systems Workshop, Annapolis, MD, USA, 2–5 November 1998. [Google Scholar]
- European Commission. Annex to the Commission Implementing Decision on the Adoption of the Work Programme 2018 and on the Financing of the Copernicus Programme; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- EEA and Copernicus. Available online: https://www.eea.europa.eu/about-us/who/copernicus-1 (accessed on 29 March 2019).
- About the Copernicus In Situ Component. Available online: https://insitu.copernicus.eu/about (accessed on 7 May 2019).
- Space Economy. Available online: https://www.sviluppoeconomico.gov.it/index.php/it/impresa/competitivita-e-nuove-imprese/space-economy (accessed on 7 May 2019).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; Space Strategy for Europe; European Commission: Brussels, Belgium, 2016; COM(2016) 705 Final. [Google Scholar]
- Raspini, F.; Bianchini, S.; Ciampalini, A.; Del Soldato, M.; Solari, L.; Novali, F.; Del Conte, S.; Rucci, A.; Ferretti, A.; Casagli, N. Continuous, semi-automatic monitoring of ground deformation using Sentinel-1 satellites. Sci. Rep. 2018, 8, 7253. [Google Scholar] [CrossRef]
- De Luca, C.; Zinno, I.; Manunta, M.; Lanari, R.; Casu, F. Large areas surface deformation analysis through a cloud computing P-SBAS approach for massive processing of DInSAR time series. Remote Sens. Environ. 2017, 202, 3–17. [Google Scholar] [CrossRef]
- Polcari, M.; Albano, M.; Montuori, A.; Bignami, C.; Tolomei, C.; Pezzo, G.; Falcone, S.; La Piana, C.; Doumaz, F.; Salvi, S.; et al. InSAR Monitoring of Italian Coastline Revealing Natural and Anthropogenic Ground Deformation Phenomena and Future Perspectives. Sustainability 2018, 10, 3152. [Google Scholar] [CrossRef]
- InSAR Norway. Available online: https://www.ngu.no/en/topic/insar-norway (accessed on 7 May 2019).
- Kalia, A.C.; Frei, M.; Lege, T. A Copernicus downstream-service for the nationwide monitoring of surface displacements in Germany. Remote Sens. Environ. 2017, 202, 234–249. [Google Scholar] [CrossRef]
- Novellino, A.; Cigna, F.; Brahmi, M.; Sowter, A.; Bateson, L.; Marsh, S. Assessing the feasibility of a national InSAR ground deformation map of Great Britain with Sentinel-1. Geosciences 2017, 7, 19. [Google Scholar] [CrossRef]
- HIKE—Hazard and Impact Knowledge for Europe. Available online: http://geoera.eu/projects/hike/ (accessed on 7 May 2019).
- GeoERA—Establishing the European Geological Surveys Research Area to deliver a Geological Service for Europe. Available online: http://geoera.eu/ (accessed on 7 May 2019).
- EIA Opinion. Available online: http://www.va.minambiente.it/en-GB/Oggetti/Documentazione/1552/2515?pagina=2 (accessed on 7 May 2019).
- Indirizzi e linee guida per il monitoraggio della sismicità, delle deformazioni del suolo e delle pressioni di poro nell’ambito delle attività antropiche. Available online: https://unmig.mise.gov.it/images/docs/85_238.pdf (accessed on 7 May 2019).
Satellite | Geometry | n. Images | n. Scatterers | Period |
---|---|---|---|---|
ERS 1-2 | Asc | 40 | 8480 | 03 July 1992–01 January 2001 |
ERS 1-2 | Desc | 67 | 12,650 | 10 May 1992–13 December 2000 |
RSAT1 | Asc | 109 | 34,044 | 08 May 2003–16 December 2011 |
RSAT1 | Desc | 99 | 35,232 | 25 April 2003–27 December 2011 |
Satellite | Geometry | n. Images | n. Scatterers | Period |
---|---|---|---|---|
ERS 1-2 | Desc | 65 | 14,249 | 10 May 1992–13 December 2000 1 |
Envisat | Desc | n.d | 34,816 | April 2003–February 2006 2 |
Envisat | Asc | n.d | 32,782 | June 2003–March 2006 2 |
RSAT1 | Asc | 67 | 55,024 | 16 January 2006–30 April 2011 3 |
Data | GPS Dosso cm | GPS Average | Agosta Upper |
---|---|---|---|
01 January 1980 | 16 | 0 | 0 |
01 January 1990 | 28 | 0 | 0 |
01 January 2000 | 34 | 1 | 1 |
01 January 2010 | 35 | 2 | 2 |
01 January 2015 | 35 | 2 | 2 |
01 June 2017 | 36 | 2 | 2 |
01 June 2020 | 36 | 5 | 8 |
01 June 2027 | 36 | 9 | 17 |
01 June 2030 | 36 | 10 | 17 |
01 June 2040 | 36 | 10 | 17 |
01 June 2050 | 35 | 11 | 17 |
01 June 2060 | 34 | 11 | 17 |
Data | GPS Average | Agosta Upper |
---|---|---|
01 June 2017 | 0 | 0 |
01 June 2020 | 3 | 6 |
01 January 2030 | 7 | 15 |
01 June 2060 | 7 | 14 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comerci, V.; Vittori, E. The Need for a Standardized Methodology for Quantitative Assessment of Natural and Anthropogenic Land Subsidence: The Agosta (Italy) Gas Field Case. Remote Sens. 2019, 11, 1178. https://doi.org/10.3390/rs11101178
Comerci V, Vittori E. The Need for a Standardized Methodology for Quantitative Assessment of Natural and Anthropogenic Land Subsidence: The Agosta (Italy) Gas Field Case. Remote Sensing. 2019; 11(10):1178. https://doi.org/10.3390/rs11101178
Chicago/Turabian StyleComerci, Valerio, and Eutizio Vittori. 2019. "The Need for a Standardized Methodology for Quantitative Assessment of Natural and Anthropogenic Land Subsidence: The Agosta (Italy) Gas Field Case" Remote Sensing 11, no. 10: 1178. https://doi.org/10.3390/rs11101178
APA StyleComerci, V., & Vittori, E. (2019). The Need for a Standardized Methodology for Quantitative Assessment of Natural and Anthropogenic Land Subsidence: The Agosta (Italy) Gas Field Case. Remote Sensing, 11(10), 1178. https://doi.org/10.3390/rs11101178