Application of Particle Swarm Optimization with Simulated Annealing in MIT Regularization Image Reconstruction
Abstract
:1. Introduction
- (1)
- Take the dimension of the Hessian matrix to obtain a novel penalty term.
- (2)
- Propose a modified hybrid regularization algorithm and add the penalty term in the MHR (modified regularization algorithm).
- (3)
- To find the optimal parameters, the combined PSO-SA optimizers are proposed.
- (4)
- Use the correlation coefficient (CC), relative error (RE) and condition number of the Hessian matrix to evaluate the effectiveness of the proposed method.
2. Related Work
3. Principles and Method
3.1. MIT Principles
3.2. Hybrid Regularization Method Based on PSO-SA
3.2.1. Regularization Reconstruction
3.2.2. Hybrid Regularization Algorithm
3.2.3. PSO and SA Algorithm
Algorithm 1 Pseudocode of PSO algorithm. |
1: Initialize a swarm of particles with random positions and velocities in the search space 2: Repeat 3: adjust constriction factor value χ 4: for all particles in swarm do 5: calculate particle’s fitness 6: if fitness is better than that of the best particle then 7: update best particle and save fitness 8: end if 9: end for 10: for all particles in swarm do 11: retrieve best particle from neighborhood 12: update position and velocity 13: update position and velocity 14: end for 15: until reaching termination condition 16: return solution of best particle in swarm |
Algorithm 2 Pseudocode of SA algorithm. |
1: , temperature coefficient ε, i denotes the present solution at time k with a cost C(i), j denotes the neighboring solution with a cost C(j) 2: 3: ), do 4: generate the neighboring solution j of the current solution i 5: 6: if the neighboring solution is set as the new current solution 7: else 8: calculate 9: 10: 11: 12: then the neighboring solution is set as the new current solution 13: end if 14: end for 15: 16: end do 17: return the best solution |
3.2.4. Parameters Selection Based on PSO-SA
Algorithm 3 Selecting parameters by PSO-SA. |
1: in the search space, i = 1, 2,…, n, Let k = 0. 2: Evaluate the fitness value of all particles. 3: T0 and cooling rate ε. 4: repeat 5: of each particle. 6: . 7: calculate 8: if accept the new position 9: else if accept the new position 10: end if 11: until renew each particle to the new position 12: if 13: then ; k = k + 1; 14: Go to step 4 15: else 16: return the best particle |
4. Results and Analysis
4.1. Stimulation Platform
4.2. Evalution Metrics
4.3. Numerical Stability
4.4. Reconstruction Results and Analysis
4.4.1. Typical Model
4.4.2. Head Model
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Wang, L. Screening and biosensor-based approaches for lung cancer detection. Sensors 2017, 17, 2420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marmugi, L.; Renzoni, F. Optical Magnetic Induction Tomography of the Heart. Sci. Rep. 2016, 6, 23962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, Y.; Luo, H. A New Method of Haemorrhagic Stroke Detection Via Deep Magnetic Induction Tomography. Front. Neurosci. 2021, 15, 495. [Google Scholar] [CrossRef] [PubMed]
- Ke, L.; Zu, W.; Chen, J.; Ding, X. A bio-impedance quantitative method based on magnetic induction tomography for intracranial hematoma. Med. Biol. Eng. Comput. 2020, 58, 857–869. [Google Scholar] [CrossRef]
- Ma, L.; Spagnul, S.; Soleimani, M. Metal solidification imaging process by magnetic induction tomography. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Soleimani, M.; Li, F.; Spagnul, S.; Palacios, J.; Barbero, J.I.; Gutierrez, T.; Viotto, A. In situ steel solidification imaging in continuous casting using magnetic induction tomography. Meas. Sci. Technol. 2020, 31, 065401. [Google Scholar] [CrossRef]
- Zhdanov, M.S.; Yoshioka, K. Cross-well electromagnetic imaging in three dimensions. Explor. Geophys. 2003, 34, 34–40. [Google Scholar] [CrossRef]
- Ke, L.; Lin, X.; Du, Q. An Improved Back-Projection Algorithm for Magnetic Induction Tomography Image Reconstruction. Adv. Mater. Res. 2013, 647, 630–635. [Google Scholar] [CrossRef]
- Sun, B.; Yue, S.; Cui, Z.; Wang, H. A new linear back projection algorithm to electrical tomography based on measuring data decomposition. Meas. Sci. Technol. 2015, 26, 125402. [Google Scholar] [CrossRef]
- Hao, J.; Chen, G.; Cao, Z.; Yin, W.; Zhao, Q. Image reconstruction algorithm for EMT based on modified Tikhonov regularization method. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference, Graz, Austria, 13–16 May 2012; pp. 2507–2510. [Google Scholar]
- Chen, R.; Huang, J.; Wang, H.; Li, B.; Zhao, Z.; Wang, J.; Wang, Y. A Novel Algorithm for High-Resolution Magnetic Induction Tomography Based on Stacked Auto-Encoder for Biological Tissue Imaging. IEEE Access 2019, 7, 185597–185606. [Google Scholar] [CrossRef]
- Wang, J.; Lu, H.; Yan, K.; Ye, M. An Improved Tikhonov Method for Magnetic Induction Tomography. In Proceedings of the 2018 9th International Conference on Information Technology in Medicine and Education (ITME), Hangzhou, China, 19–21 October 2018; pp. 718–722. [Google Scholar]
- Borsic, A.; Graham, B.M.; Adler, A.; Lionheart, W.R.B. In Vivo Impedance Imaging with Total Variation Regularization. IEEE Trans. Med. Imaging 2010, 29, 44–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, B.; Schullcke, B.; Krueger-Ziolek, S.; Zhang, F.; Mueller-Lisse, U.; Moeller, K. Higher order total variation regularization for EIT reconstruction. Med. Biol. Eng. Comput. 2018, 56, 1367–1378. [Google Scholar] [CrossRef] [PubMed]
- Song, X.Z.; Xu, Y.B.; Dong, F. A Spatially adaptive total variation regularization method for electrical resistance tomography. Meas. Sci. Technol. 2015, 26, 125401. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Wang, X.; Yang, D.; Lv, Y. A New Hybrid Image Reconstruction Algorithm for Magnetic Induction Tomography. Adv. Mater. Res. 2012, 532–533, 1706–1710. [Google Scholar] [CrossRef]
- He, W.; Ran, P.; Xu, Z.; Li, B.; Li, S. A 3D Visualization Method for Bladder Filling Examination Based on EIT. Comput. Math Method M. 2012, 2012, 528096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Liu, Z. A novel algorithm based on L1-Lp norm for inverse problem of electromagnetic tomography. Flow Meas. Instrum. 2019, 65, 318–326. [Google Scholar] [CrossRef]
- Han, M.; Cheng, X.; Xue, Y. Comparison with reconstruction algorithms in magnetic induction tomography. Physiol. Meas. 2016, 37, 683–697. [Google Scholar] [CrossRef]
- Liang, G.; Ren, S.; Zhao, S.; Dong, F. A Lagrange-Newton method for EIT/UT dual-modality image reconstruction. Sensors 2019, 19, 1966. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Wang, Y.F.; Zhou, Y.G. Three-dimensional electrical capacitance tomography reconstruction by the Landweber iterative algorithm with fuzzy thresholding. IET Sci. Meas. Technol. 2014, 8, 487–496. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, G.; He, N.; Tan, X. Landweber iterative algorithm based on regularization in electromagnetic tomography for multiphase flow measurement. Flow Meas. Instrum. 2012, 27, 53–58. [Google Scholar] [CrossRef]
- Zhang, L.; Zhai, Y.; Wang, X.; Tian, P. Reconstruction method of electrical capacitance tomography based on wavelet fusion. Measurement 2018, 126, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Hu, L.; Wang, J.; Li, L. An image reconstruction algorithm of EIT based on pulmonary prior information. Front Elect. Eng. Chin. 2009, 4, 121–126. [Google Scholar] [CrossRef]
- Wang, J. A two-step accelerated Landweber-type iteration regularization algorithm for sparse reconstruction of electrical impedance tomography. Math. Methods Appl. Sci. 2021. [Google Scholar] [CrossRef]
- Hao, J.; Yin, W.; Zhao, Q.; Xu, K.; Chen, G. Preconditioning of projected SIRT algorithm for electromagnetic tomography. Flow Meas. Instrum. 2013, 29, 39–44. [Google Scholar] [CrossRef]
- Ando, T.; Sueishi, N. On the Convergence Rate of the SCAD-Penalized Empirical likelihood Estimator. Econometrics 2019, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Pasades, D.J.; Ribeiro, A.L.; Ramos, H.G.; Rocha, T.J. Automatic parameter selection for Tikhonov regularization in ECT Inverse problem. Sens. Actuators A Phys. 2016, 246, 73–80. [Google Scholar] [CrossRef]
- Xu, Y.; Pei, Y.; Dong, F. An extended L-curve method for choosing a regularization parameter in electrical resistance tomography. Meas. Sci. Technol. 2016, 27, 114002. [Google Scholar] [CrossRef]
- Liao, H.; Li, F.; Ng, M.K. Selection of regularization parameter in total variation image restoration. J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 2009, 26, 2311–2320. [Google Scholar] [CrossRef]
- Wen, Y.-W.; Chan, R.H. Using generalized cross validation to select regularization parameter for total variation regularization problems. Inverse Probl. Imaging 2018, 12, 1103–1120. [Google Scholar] [CrossRef] [Green Version]
- Scherzer, O. The use of Morozov’s discrepancy principle for Tikhonov regularization for solving nonlinear ill-posed problems. Computing 1993, 51, 45–60. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, D.; Wei, J.-J.; Liang, H.-F. A parameter selection strategy for particle swarm optimization based on particle positions. Expert Syst. Appl. 2014, 41, 3576–3584. [Google Scholar] [CrossRef]
- Gong, W.; Cai, Z. Adaptive parameter selection for strategy adaptation in differential evolution. Inf. Sci. 2011, 181, 5364–5386. [Google Scholar] [CrossRef]
- Caeiros, J.M.S.; Martins, R.C. An optimized forward problem solver for the complete characterization of the electromagnetic properties of biological tissues in magnetic induction tomography. IEEE Trans. Magn. 2012, 48, 4707–4712. [Google Scholar] [CrossRef]
- Markovsky, I.; Luisa Rastello, M.; Premoli, A.; Kukush, A.; Van Huffel, S. The element-wise weighted total least squares problem. Comput. Stat. Data An. 2006, 50, 181–209. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceeding of the 1995 IEEE International Conference, Neural Networks, Perth, Australia, 27 November 2011; pp. 1942–1948. [Google Scholar]
- Kizielewicz, B.; Sałabun, W. A new approach to identifying a multi-criteria decision model based on stochastic optimization techniques. Symmetry 2020, 12, 1551. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
Author | Fields | Method | Results |
---|---|---|---|
Wang et al. [12] | MIT | Improved TK | CC < 0.85 RE > 0.42 |
Chen et al. [16] | MIT | TK & Variation | CC < 0.90 RE > 0.33 |
Han et al. [19] | MIT | Iterative NR | CC < 0.70 |
Liu et al. [18] | EMT | TK & TV | CC < 0.70 RE > 0.37 |
Hao et al. [26] | EMT | Projected SIRT | CC < 0.85 RE > 0.23 |
Song et al. [15] | ERT | Spatially Adaptive TV | CC < 0.95 RE > 0.40 |
Zhang et al. [23] | ECT | Iterative Landweber& CGLS | CC < 0.86 RE > 0.55 |
Wang et al. [25] | EIT | Two-step Accelerated Iterative Landweber | CC < 0.95 RE > 0.11 |
Original | TK | HR | MHR |
---|---|---|---|
1.4675 × 1024 | 2.6809 × 1021 | 7.3132 × 1014 | 4.7963 × 1013 |
Typical Models | RE | CC | ||||
---|---|---|---|---|---|---|
TK | HR | MHR | TK | HR | MHR | |
1 | 2.8423 | 1.8261 | 0.2355 | 0.7946 | 0.7841 | 0.9971 |
2 | 3.6025 | 1.6115 | 0.4577 | 0.6788 | 0.7689 | 0.9927 |
3 | 1.1516 | 1.1063 | 0.7541 | 0.6595 | 0.6986 | 0.8644 |
4 | 1.1002 | 1.0562 | 0.8493 | 0.6617 | 0.6937 | 0.8493 |
5 | 0.9123 | 0.9008 | 0.8599 | 0.5595 | 0.5651 | 0.7522 |
6 | 1.1954 | 1.0579 | 0.9601 | 0.6523 | 0.6814 | 0.8486 |
Typical Models | RE | CC | ||||
---|---|---|---|---|---|---|
TK | HR | MHR | TK | HR | MHR | |
55 | 3.6337 | 1.6324 | 0.4622 | 0.6548 | 0.7531 | 0.9812 |
45 | 3.6963 | 1.6823 | 0.4945 | 0.6080 | 0.7033 | 0.9434 |
35 | 3.7623 | 1.7362 | 0.5442 | 0.5415 | 0.6423 | 0.9045 |
Typical Models | RE | CC | ||||
---|---|---|---|---|---|---|
TK | HR | MHR | TK | HR | MHR | |
55 | 1.2369 | 1.1683 | 0.8113 | 0.5891 | 0.6230 | 0.8080 |
45 | 1.3026 | 1.2227 | 0.8526 | 0.5080 | 0.5564 | 0.7546 |
35 | 1.4243 | 1.3405 | 0.9514 | 0.4267 | 0.4527 | 0.6401 |
Typical Models | RE | CC | ||||
---|---|---|---|---|---|---|
TK | HR | MHR | TK | HR | MHR | |
55 | 1.2854 | 1.1214 | 1.0234 | 0.5622 | 0.6090 | 0.7845 |
45 | 1.3609 | 1.2016 | 1.0853 | 0.4654 | 0.5170 | 0.7182 |
35 | 1.5121 | 1.3443 | 1.1915 | 0.3224 | 0.3863 | 0.6036 |
Characteristics | Maximum Length | Maximum Width | Maximum Height | Head Circumference |
---|---|---|---|---|
Size (cm) | 20 | 17 | 24 | 60 |
Tissues | Scalp | Skull | Cerebrum | Cerebellum | Brain Stem | Hemorrhage |
---|---|---|---|---|---|---|
Conductivity (s/m) | 0.02 | 0.03 | 0.21 | 0.24 | 0.25 | 2 |
Length | TK | HR | MHR |
---|---|---|---|
5 cm | 0.7870 | 0.8224 | 0.8985 |
3 cm | 0.7623 | 0.8139 | 0.8826 |
2 cm | 0.7589 | 0.8034 | 0.8764 |
SNR (dB) | TK | HR | MHR |
---|---|---|---|
55 | 0.7070 | 0.7752 | 0.8546 |
45 | 0.6023 | 0.7024 | 0.8126 |
35 | 0.4889 | 0.6234 | 0.7512 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; Xu, B.; Xu, B.; Lu, T.; Wang, X. Application of Particle Swarm Optimization with Simulated Annealing in MIT Regularization Image Reconstruction. Symmetry 2022, 14, 275. https://doi.org/10.3390/sym14020275
Yang D, Xu B, Xu B, Lu T, Wang X. Application of Particle Swarm Optimization with Simulated Annealing in MIT Regularization Image Reconstruction. Symmetry. 2022; 14(2):275. https://doi.org/10.3390/sym14020275
Chicago/Turabian StyleYang, Dan, Bin Xu, Bin Xu, Tian Lu, and Xu Wang. 2022. "Application of Particle Swarm Optimization with Simulated Annealing in MIT Regularization Image Reconstruction" Symmetry 14, no. 2: 275. https://doi.org/10.3390/sym14020275
APA StyleYang, D., Xu, B., Xu, B., Lu, T., & Wang, X. (2022). Application of Particle Swarm Optimization with Simulated Annealing in MIT Regularization Image Reconstruction. Symmetry, 14(2), 275. https://doi.org/10.3390/sym14020275