Applications of Riemann–Liouville Fractional Integral of q-Hypergeometric Function for Obtaining Fuzzy Differential Sandwich Results
Abstract
:1. Introduction
- (1)
- (2)
- ,
2. Main Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Araour, M.; Mennouni, A. A New Procedures for Solving Two Classes of Fuzzy Singular Integro-Differential Equations: Airfoil Collocation Methods. Int. J. Appl. Comput. Math 2022, 8, 35. [Google Scholar] [CrossRef]
- Gumah, G.; Al-Omari, S.; Baleanu, D. Soft computing technique for a system of fuzzy Volterra integro-differential equations in a Hilbert space. Appl. Numer. Math. 2020, 152, 310–322. [Google Scholar] [CrossRef]
- Stanojevic, B.; Dzitac, S.; Dzitac, I. Crisp-linear-and Models in Fuzzy Multiple Objective Linear Fractional Programming. Int. J. Comput. Commun. Control 2020, 15, 3812. [Google Scholar] [CrossRef] [Green Version]
- Kuantama, E.; Vesselenyi, T.; Dzitac, S.; Ţarcă, R. PID and Fuzzy-PID Control Model for Quadcopter Attitude with Disturbance Parameter. Int. J. Comput. Commun. Control 2017, 12, 519–532. [Google Scholar] [CrossRef] [Green Version]
- Dzitac, S.; Oros, H.; Deac, D.; Nădăban, S. Fixed Point Theory in Fuzzy Normed Linear Spaces: A General View. Int. J. Comput. Commun. Control 2021, 16, 4587. [Google Scholar] [CrossRef]
- Dzitac, I.; Filip, F.G.; Manolescu, M.J. Fuzzy Logic Is Not Fuzzy: World-renowned Computer Scientist Lotfi A. Zadeh. Int. J. Comput. Commun. Control 2017, 12, 748–789. [Google Scholar] [CrossRef] [Green Version]
- Dzitac, S.; Nădăban, S. Soft Computing for Decision-Making in Fuzzy Environments: A Tribute to Professor Ioan Dzitac. Mathematics 2021, 9, 1701. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G. The notion of subordination in fuzzy sets theory. Gen. Math. 2011, 19, 97–103. [Google Scholar]
- Oros, G.I.; Oros, G. Fuzzy differential subordination. Acta Univ. Apulensis 2012, 3, 55–64. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Second order differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 289–305. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Mich. Math. J. 1981, 28, 157–172. [Google Scholar] [CrossRef]
- Alb Lupaş, A.; Oros, G. On special fuzzy differential subordinations using Salagean and Ruscheweyh operators. Appl. Math. Comput. 2015, 261, 119–127. [Google Scholar]
- Venter, A.O. On special fuzzy differential subordination using Ruscheweyh operator. Analele Univ. Oradea Fasc. Math. 2015, 22, 167–176. [Google Scholar]
- Eş, A.H. On fuzzy differential subordination. Math. Moravica 2015, 19, 123–129. [Google Scholar]
- Atshan, W.G.; Hussain, K.O. Fuzzy Differential Superordination. Theory Appl. Math. Comput. Sci. 2017, 7, 27–38. [Google Scholar]
- Majeed, A.H. Fuzzy differential subordinations properties of analytic functions involving generalized differential operator. Sci. Int. Lahore 2018, 30, 297–302. [Google Scholar]
- Thilagavathi, K. Fuzzy subordination and superordination results for certain subclasses of analytic functions associated with Srivastava-Attitya operator. Int. J. Pure Appl. Math. 2018, 118, 921–929. [Google Scholar]
- Srivastava, H.M.; El-Deeb, S.M. Fuzzy Differential Subordinations Based upon the Mittag-Leffler Type Borel Distribution. Symmetry 2021, 13, 1023. [Google Scholar] [CrossRef]
- Oros, G.I. Univalence criteria for analytic functions obtained using fuzzy differential subordinations. Turk. J. Math. 2022, 46, 1478–1491. [Google Scholar] [CrossRef]
- Acu, M.; Oros, G.; Rus, A.M. Fractional Integral of the Confluent Hypergeometric Function Related to Fuzzy Differential Subordination Theory. Fractal Fract. 2022, 6, 413. [Google Scholar] [CrossRef]
- Alb Lupaş, A. Applications of the Fractional Calculus in Fuzzy Differential Subordinations and Superordinations. Mathematics 2021, 9, 2601. [Google Scholar] [CrossRef]
- Alb Lupaş, A. Fuzzy Differential Sandwich Theorems Involving the Fractional Integral of Confluent Hypergeometric Function. Symmetry 2021, 13, 1992. [Google Scholar] [CrossRef]
- Wanas, A.K.; Bulut, S. Some Results for Fractional Derivative Associated with Fuzzy Differential Subordinations. J. Al-Qadisiyah Comput. Sci. Math. 2020, 12, 27–36. [Google Scholar]
- Oros, G.I.; Dzitac, S. Applications of Subordination Chains and Fractional Integral in Fuzzy Differential Subordinations. Mathematics 2022, 10, 1690. [Google Scholar] [CrossRef]
- Alb Lupaş, A. On Special Fuzzy Differential Subordinations Obtained for Riemann—Liouville Fractional Integral of Ruscheweyh and Sălăgean Operators. Axioms 2022, 11, 428. [Google Scholar] [CrossRef]
- Kareem, A. Fuzzy Differential Subordinations for Analytic Functions Involving Wanas Operator and Some Applications in Fractional Calculus. Ikonian J. Math. 2020, 2, 1–9. [Google Scholar]
- Frenkel, E.; Mukhin, E. Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras. Commun. Math. Phys. 2001, 216, 23–57. [Google Scholar] [CrossRef] [Green Version]
- Gasper, G.; Rahman, M. Some systems of multivariable orthogonal q-Racah polynomials. Ramanujan J. 2007, 13, 389–405. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Simeonov, P. q-difference operators for orthogonal polynomials. J. Comput. Appl. Math. 2009, 233, 749–761. [Google Scholar] [CrossRef] [Green Version]
- Zagorodnyuk, S.M. On a Family of Hypergeometric Sobolev Orthogonal Polynomials on the Unit Circle. Constr. Math. Anal. 2020, 3, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M. A Survey of Some Recent Developments on Higher Transcendental Functions of Analytic Number Theory and Applied Mathematics. Symmetry 2021, 13, 2294. [Google Scholar] [CrossRef]
- Exton, H. q-Hypergeometric Functions and Applications; Hastead Press: New York, NY, USA, 1983. [Google Scholar]
- Aral, A.; Gupta, V.; Agarwal, R.P. Applications of q-Calculus in Operator Theory; Springer Science + Business Media: New York, NY, USA, 2013. [Google Scholar]
- Ernst, T. A History of q-Calculus and a New Method; UUDM Report; Uppsala University: Uppsala, Sweden, 2000. [Google Scholar]
- Annyby, H.M.; Mansour, S.K. q-Fractional Calculus and Equations; Springer: Berlin/Helidelberg, Germany, 2012. [Google Scholar]
- Jackson, F.H. q-Difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Ismail, M.E.-H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA, 1989; pp. 329–354. [Google Scholar]
- Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slov. 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
- Arif, M.; Srivastava, H.M.; Umar, S. Some application of a q-analogue of the Ruscheweyh type operator for multivalent functions. Rev. Real Acad. Cienc. Exact. Fis. Nat. Ser. A Math. 2019, 113, 1121–1221. [Google Scholar] [CrossRef]
- Seoudy, T.; Aouf, M.K. Fekete-Szegö Problem for Certain Subclass of Analytic Functions with Complex Order Defined by q-Analogue of Ruscheweyh Operator. Constr. Math. Anal. 2020, 3, 36–44. [Google Scholar] [CrossRef]
- Naeem, M.; Hussain, S.; Mahmood, T.; Khan, S.; Darus, M. A New Subclass of Analytic Functions Defined by Using Salagean q-Differential Operator. Mathematics 2019, 7, 458. [Google Scholar] [CrossRef]
- Darus, M. A new look at q-hypergeometric functions. TWMS J. App. Eng. Math. 2014, 4, 16–19. [Google Scholar]
- Ahuja, O.P.; Çetinkaya, A. Use of Quantum Calculus approach in Mathematical Sciences and its role in geometric function theory. AIP Conf. Proc. 2019, 2095, 020001. [Google Scholar]
- Mohammed, A.; Darus, M. A generalized operator involving the q-hypergeometric function. Mat. Vesnik 2013, 65, 454–465. [Google Scholar]
- Challab, K.A.; Darus, M.; Ghanim, F. On q-hypergeometric function. Far East J. Math. Sci. (FJMS) 2017, 101, 2095–2109. [Google Scholar] [CrossRef]
- Challab, K.A.; Darus, M.; Ghanim, F. On subclass of meromorphically univalent functions defined by a linear operator associated with λ-generalized Hurwitz–Lerch zeta function and q-hypergeometric function. Ital. J. Pure Appl. Math. 2018, 39, 410–423. [Google Scholar]
- Srivastava, H.M.; Arjika, S. A General Family of q-Hypergeometric Polynomials and Associated Generating Functions. Mathematics 2021, 9, 1161. [Google Scholar] [CrossRef]
- Owa, S. On the distortion theorems I. Kyungpook Math. J. 1978, 18, 53–59. [Google Scholar]
- Owa, S.; Srivastava, H.M. Univalent and starlike generalized hypergeometric functions. Can. J. Math. 1987, 39, 1057–1077. [Google Scholar] [CrossRef]
- Gasper, G.; Rahman, M. Basic hypergeometric series. In Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 1990; Volume 35. [Google Scholar]
- Alb Lupaş, A.; Oros, G.I. Sandwich type results regarding Riemann–Liouville fractional integral of q-hypergeometric function. Demonstr. Math. 2022. submitted. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations. Theory and Applications; Marcel Dekker, Inc.: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
- Bulboacă, T. Classes of first order differential superordinations. Demonstr. Math. 2002, 35, 287–292. [Google Scholar] [CrossRef]
- Baleanu, D.; Sajjadi, S.S.; Asad, J.H.; Jajarmi, A.; Estiri, E. Hyperchaotic behaviors, optimal control, and synchronization of a nonautonomous cardiac conduction system. Adv. Differ. Equ. 2021, 2021, 157. [Google Scholar] [CrossRef]
- Baleanu, D.; Zibaei, S.; Namjoo, M.; Jajarmi, A. A nonstandard finite difference scheme for the modeling and nonidentical synchronization of a novel fractional chaotic system. Adv. Differ. Equ. 2021, 2021, 308. [Google Scholar] [CrossRef]
- Khalil, S.; Kousar, S.; Kausar, N.; Imran, M.; Oros, G.I. Bipolar Interval-Valued Neutrosophic Optimization Model of Integrated Healthcare System. CMC-Comput. Mater. Cont. 2022, 73, 6207–6224. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alb Lupaş, A.; Oros, G.I. Applications of Riemann–Liouville Fractional Integral of q-Hypergeometric Function for Obtaining Fuzzy Differential Sandwich Results. Symmetry 2022, 14, 2097. https://doi.org/10.3390/sym14102097
Alb Lupaş A, Oros GI. Applications of Riemann–Liouville Fractional Integral of q-Hypergeometric Function for Obtaining Fuzzy Differential Sandwich Results. Symmetry. 2022; 14(10):2097. https://doi.org/10.3390/sym14102097
Chicago/Turabian StyleAlb Lupaş, Alina, and Georgia Irina Oros. 2022. "Applications of Riemann–Liouville Fractional Integral of q-Hypergeometric Function for Obtaining Fuzzy Differential Sandwich Results" Symmetry 14, no. 10: 2097. https://doi.org/10.3390/sym14102097
APA StyleAlb Lupaş, A., & Oros, G. I. (2022). Applications of Riemann–Liouville Fractional Integral of q-Hypergeometric Function for Obtaining Fuzzy Differential Sandwich Results. Symmetry, 14(10), 2097. https://doi.org/10.3390/sym14102097