On Some Asymptotic Expansions for the Gamma Function
Abstract
:1. Introduction
2. Lemmas
3. Main Results
4. Numerical Comparisons among Some Approximation Formulas of
5. Some Bounds of Using Padé Approximants
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Batir, N. Very accurate approximations for the factorial function. J. Math. Inequal. 2010, 4, 335–344. [Google Scholar] [CrossRef]
- Gosper, R.W. Decision procedure for indefinite hypergeometric summation. Proc. Natl. Acad. Sci. USA 1978, 75, 40–42. [Google Scholar] [CrossRef] [PubMed]
- Mortici, C. On Gospers formula for the Gamma function. J. Math. Inequal. 2011, 5, 611–614. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Applied Mathematical Series; Nation Bureau of Standards: Dover, DE, USA; New York, NY, USA, 1972; Volume 55. [Google Scholar]
- Burnside, W. A rapidly convergent series for logN! Messenger Math. 1917, 46, 157–159. [Google Scholar]
- Andrews, G.E.; Berndt, B.C. Ramanujan’s Lost Notebook: Part IV; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Berndt, B.C.; Choi, Y.-S.; Kang, S.-Y. The problems submitted by Ramanujan. J. Indian Math. Soc. Contemp. Math. 1999, 236, 15–56. [Google Scholar]
- Karatsuba, E.A. On the asymptotic representation of the Euler Gamma function by Ramanujan. J. Comput. Appl. Math. 2001, 135, 225–240. [Google Scholar] [CrossRef]
- Mortici, C. On Ramanujan’s large argument formula for the Gamma function. Ramanujan J. 2011, 26, 185–192. [Google Scholar] [CrossRef]
- Ramanujan, S. The Lost Notebook and Other Unpublished Papers; Narosa Publishing House: New Delhi, India; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Mortici, C. Improved asymptotic formulas for the Gamma function. Comput. Math. Appl. 2011, 61, 3364–3369. [Google Scholar] [CrossRef]
- Available online: http://www.rskey.org/gamma.htm (accessed on 20 April 2020).
- Smith, W.D. The Gamma Function Revisited. 2006. Available online: http://schule.bayernport.com/gamma/gamma05.pdf (accessed on 20 April 2020).
- Alzer, H. Sharp upper and lower bounds for the Gamma function. Proc. R. Soc. Edinb. 2009, 139A, 709–718. [Google Scholar] [CrossRef]
- Lu, D.; Song, L.; Ma, C. A generated approximation of the Gamma function related to Windschitl’s formula. J. Number Theory 2014, 140, 215–225. [Google Scholar] [CrossRef]
- Chen, C.-P. Asymptotic expansions of the Gamma function related to Windschitl’s formula. Appl. Math. Comput. 2014, 245, 174–180. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Tian, J.-F. An accurate approximation formula for Gamma function. J. Inequal. Appl. 2018, 2018, 56. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.-H.; Tian, J.-F. Two asymptotic expansions for Gamma function developed by Windschitl’s formula. Open Math. 2018, 16, 1048–1060. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Tian, J.-F. A family of Windschitl type approximations for Gamma function. J. Math. Inequal. 2018, 12, 889–899. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Tian, J.-F. Windschitl type approximation formulas for the Gamma function. J. Inequal. Appl. 2018, 2018, 272. [Google Scholar] [CrossRef] [PubMed]
- Nemes, G. New asymptotic expansion for the Gamma function. Arch. Math. 2010, 95, 161–169. [Google Scholar] [CrossRef]
- Mortici, C. A continued fraction approximation of the Gamma function. J. Math. Anal. Appl. 2013, 402, 405–410. [Google Scholar] [CrossRef]
- Ahmad, S.; Ullah, A.; Akgül, A.; Jarad, F. A hybrid analytical technique for solving nonlinear fractional order PDEs of power law kernel: Application to KdV and Fornberg-Witham equations. AIMS Math. 2022, 7, 9389–9404. [Google Scholar] [CrossRef]
- Gulalai Ahmad, S.; Rihan, F.A.; Ullah, A.; Al-Mdallal, Q.M.; Akgül, A. Nonlinear analysis of a nonlinear modified KdV equation under Atangana Baleanu Caputo derivative. AIMS Math. 2022, 7, 7847–7865. [Google Scholar] [CrossRef]
- Chen, C.-P.; Elezović, N.; Vukšić, L. Asymptotic formulae associated with the Wallis power function and digamma function. J. Class. Anal. 2013, 2, 151–166. [Google Scholar] [CrossRef]
- Mortici, C. New approximations of the Gamma function in terms of the digamma function. Appl. Math. Lett. 2010, 23, 97–100. [Google Scholar] [CrossRef]
- Elbert, A.; Laforgia, A. On some properties of the Gamma function. Proc. Amer. Math. Soc. 2000, 128, 2667–2673. [Google Scholar] [CrossRef]
- Mortici, C. New improvements of the Stirling formula. Appl. Math. Comput. 2010, 217, 699–704. [Google Scholar] [CrossRef]
- Mortici, C. Ramanujan formula for the generalized Stirling approximation. Ramanujan J. 2010, 217, 2579–2585. [Google Scholar] [CrossRef]
- Chen, C.-P. Asymptotic Expansions of the Gamma Function Associated with the Windschitl and Smith Formulas. 2014. Available online: https://rgmia.org/papers/v17/v17a109.pdf (accessed on 18 April 2020).
- Baker, G.A., Jr.; Graves-Morris, P.R. Padé Approximants, 2nd ed.; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Brezinski, C. Computational Aspects of Linear Control; Kluwer: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Brezinski, C.; Redivo-Zaglia, M. New representations of Padé, Padé-type, and partial Padé approximants. J. Comput. Appl. Math. 2015, 284, 69–77. [Google Scholar] [CrossRef]
n | ||
---|---|---|
1 | 0.000306466 | 0.000305449 |
10 | ||
50 | ||
100 | ||
1000 |
n | ||
---|---|---|
1 | 0.000306466 | 0.000305451 |
10 | ||
50 | ||
100 | ||
1000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, M.; Almuashi, H. On Some Asymptotic Expansions for the Gamma Function. Symmetry 2022, 14, 2459. https://doi.org/10.3390/sym14112459
Mahmoud M, Almuashi H. On Some Asymptotic Expansions for the Gamma Function. Symmetry. 2022; 14(11):2459. https://doi.org/10.3390/sym14112459
Chicago/Turabian StyleMahmoud, Mansour, and Hanan Almuashi. 2022. "On Some Asymptotic Expansions for the Gamma Function" Symmetry 14, no. 11: 2459. https://doi.org/10.3390/sym14112459
APA StyleMahmoud, M., & Almuashi, H. (2022). On Some Asymptotic Expansions for the Gamma Function. Symmetry, 14(11), 2459. https://doi.org/10.3390/sym14112459