Tags: julateh20/GeneticAlgorithmPython
Tags
PyGAD 2.10.2 A bug fix when save_best_solutions=True. Refer to this issue for more information: ahmedfgad#25
PyGAD 2.10.1 Documentation 1. In the `gene_space` parameter, any `None` value (regardless of its index or axis), is replaced by a randomly generated number based on the 3 parameters `init_range_low`, `init_range_high`, and `gene_type`. So, the `None` value in `[..., None, ...]` or `[..., [..., None, ...], ...]` are replaced with random values. This gives more freedom in building the space of values for the genes. 2. All the numbers passed to the `gene_space` parameter are casted to the type specified in the `gene_type` parameter. 3. The `numpy.uint` data type is supported for the parameters that accept integer values. 4. In the `pygad.kerasga` module, the `model_weights_as_vector()` function uses the `trainable` attribute of the model's layers to only return the trainable weights in the network. So, only the trainable layers with their `trainable` attribute set to `True` (`trainable=True`), which is the default value, have their weights evolved. All non-trainable layers with the `trainable` attribute set to `False` (`trainable=False`) will not be evolved. Thanks to [Prof. Tamer A. Farrag](https://github.com/tfarrag2000) for pointing about that at [GitHub](ahmedfgad/KerasGA#1).
Link to TorchGA project at GitHub Link to TorchGA project at GitHub: https://github.com/ahmedfgad/TorchGA
PyGAD 2.9.0 Changes in PyGAD 2.9.0 (06 December 2020): 1. The fitness values of the initial population are considered in the `best_solutions_fitness` attribute. 2. An optional parameter named `save_best_solutions` is added. It defaults to `False`. When it is `True`, then the best solution after each generation is saved into an attribute named `best_solutions`. If `False`, then no solutions are saved and the `best_solutions` attribute will be empty. 3. Scattered crossover is supported. To use it, assign the `crossover_type` parameter the value `"scattered"`. 4. NumPy arrays are now supported by the `gene_space` parameter. 5. The following parameters (`gene_type`, `crossover_probability`, `mutation_probability`, `delay_after_gen`) can be assigned to a numeric value of any of these data types: `int`, `float`, `numpy.int`, `numpy.int8`, `numpy.int16`, `numpy.int32`, `numpy.int64`, `numpy.float`, `numpy.float16`, `numpy.float32`, or `numpy.float64`.
Bug fix in applying crossover Bug fix in applying the crossover operation when the `crossover_probability` parameter is used. Thanks to Eng. Hamada Kassem, RA/TA, Construction Engineering and Management, Faculty of Engineering, Alexandria University, Egypt: https://www.linkedin.com/in/hamadakassem
PreviousNext