Skip to content

[WIP] TST use global_random_seed in sklearn/linear_model/tests/test_base.py #23464

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 14 additions & 0 deletions .env
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
###
# settings for OpenMP install
# ----------------------------
# export CC=/usr/bin/clang
# export CXX=/usr/bin/clang++
# export CPPFLAGS="$CPPFLAGS -Xpreprocessor -fopenmp"
# export CFLAGS="$CFLAGS -I/usr/local/opt/libomp/include"
# export CXXFLAGS="$CXXFLAGS -I/usr/local/opt/libomp/include"
# export LDFLAGS="$LDFLAGS -Wl,-rpath,/usr/local/opt/libomp/lib -L/usr/local/opt/libomp/lib -lomp"
# ----------------------------
# export SKLEARN_SKIP_OPENMP_TEST=True # only set if we cannot install OpenMP
export EXAMPLES_PATTERN=plot_adaboost_regression

# SKLEARN_TESTS_GLOBAL_RANDOM_SEED="all" pytest sklearn/linear_model/tests/test_base.py -k test_linear_regression
40 changes: 20 additions & 20 deletions sklearn/linear_model/tests/test_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,28 +4,26 @@
#
# License: BSD 3 clause

import pytest
import warnings

import numpy as np
from scipy import sparse
from scipy import linalg

from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_allclose
from sklearn.utils import check_random_state

import pytest
from scipy import linalg, sparse
from sklearn.datasets import load_iris, make_regression, make_sparse_uncorrelated
from sklearn.linear_model import LinearRegression
from sklearn.linear_model._base import _deprecate_normalize
from sklearn.linear_model._base import _preprocess_data
from sklearn.linear_model._base import _rescale_data
from sklearn.linear_model._base import make_dataset
from sklearn.datasets import make_sparse_uncorrelated
from sklearn.datasets import make_regression
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import add_dummy_feature
from sklearn.linear_model._base import (
_deprecate_normalize,
_preprocess_data,
_rescale_data,
make_dataset,
)
from sklearn.preprocessing import StandardScaler, add_dummy_feature
from sklearn.utils import check_random_state
from sklearn.utils._testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
)

rng = np.random.RandomState(0)
rtol = 1e-6
Expand Down Expand Up @@ -57,8 +55,10 @@ def test_linear_regression():

@pytest.mark.parametrize("array_constr", [np.array, sparse.csr_matrix])
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_linear_regression_sample_weights(array_constr, fit_intercept):
rng = np.random.RandomState(0)
def test_linear_regression_sample_weights(
array_constr, fit_intercept, global_random_seed
):
rng = np.random.RandomState(global_random_seed)

# It would not work with under-determined systems
n_samples, n_features = 6, 5
Expand Down