Skip to content

🔒 🤖 CI Update lock files for main CI build(s) 🔒 🤖 #28569

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Conversation

scikit-learn-bot
Copy link
Contributor

Update lock files.

Note

If the CI tasks fail, create a new branch based on this PR and add the required fixes to that branch.

@scikit-learn-bot scikit-learn-bot force-pushed the auto-update-lock-files-main branch from f9848e4 to 2e0c18c Compare March 4, 2024 05:13
Copy link

github-actions bot commented Mar 4, 2024

✔️ Linting Passed

All linting checks passed. Your pull request is in excellent shape! ☀️

Generated for commit: 2e0c18c. Link to the linter CI: here

@adrinjalali
Copy link
Member

related issue: pytest-dev/pytest#11779

will try to figure out the fix

@lesteve
Copy link
Member

lesteve commented Mar 4, 2024

Also the doc build failure is likely due to #28352 (comment)

@adrinjalali
Copy link
Member

Therandom_search.cv_results_ in examples/model_selection/plot_grid_search_text_feature_extraction.py before and after the cv result dtype PR:

45,57c45,127
<  'param_vect__ngram_range': masked_array(data=[(1, 2), (1, 2), (1, 1), (1, 2), (1, 2), (1, 2), (1, 2),
<                     (1, 2), (1, 2), (1, 2), (1, 2), (1, 2), (1, 2), (1, 1),
<                     (1, 2), (1, 2), (1, 1), (1, 1), (1, 2), (1, 2), (1, 1),
<                     (1, 2), (1, 2), (1, 2), (1, 1), (1, 2), (1, 2), (1, 2),
<                     (1, 1), (1, 1), (1, 2), (1, 2), (1, 2), (1, 2), (1, 1),
<                     (1, 1), (1, 2), (1, 2), (1, 2), (1, 2)],
<               mask=[False, False, False, False, False, False, False, False,
<                     False, False, False, False, False, False, False, False,
<                     False, False, False, False, False, False, False, False,
<                     False, False, False, False, False, False, False, False,
<                     False, False, False, False, False, False, False, False],
<         fill_value='?',
<              dtype=object),
---
>  'param_vect__ngram_range': masked_array(
>    data=[[1, 2],
>          [1, 2],
>          [1, 1],
>          [1, 2],
>          [1, 2],
>          [1, 2],
>          [1, 2],
>          [1, 2],
>          [1, 2],
>          [1, 2],
>          [1, 2],
>          [1, 2],
>          [1, 2],
>          [1, 1],
>          [1, 2],
>          [1, 2],
>          [1, 1],
>          [1, 1],
>          [1, 2],
>          [1, 2],
>          [1, 1],
>          [1, 2],
>          [1, 2],
>          [1, 2],
>          [1, 1],
>          [1, 2],
>          [1, 2],
>          [1, 2],
>          [1, 1],
>          [1, 1],
>          [1, 2],
>          [1, 2],
>          [1, 2],
>          [1, 2],
>          [1, 1],
>          [1, 1],
>          [1, 2],
>          [1, 2],
>          [1, 2],
>          [1, 2]],
>    mask=[[False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False],
>          [False, False]],
>    fill_value='?',
>    dtype=object),
66,67c136
<         fill_value='?',
<              dtype=object),
---
>         fill_value=999999),
77,78c146
<         fill_value='?',
<              dtype=object),
---
>         fill_value=1e+20),
90,91c158
<         fill_value='?',
<              dtype=object),
---
>         fill_value=1e+20),

cc @MarcoGorelli @thomasjpfan

@MarcoGorelli
Copy link
Contributor

Also the doc build failure is likely due to #28352 (comment)

taking a look - running the example with n_iter=3, on main:

(Pdb) random_search.cv_results_['param_vect__ngram_range']
masked_array(
  data=[[1, 1],
        [1, 2],
        [1, 2]],
  mask=[[False, False],
        [False, False],
        [False, False]],
  fill_value='?',
  dtype=object)
(Pdb) random_search.cv_results_['param_vect__ngram_range'].dtype
dtype('O')
(Pdb) random_search.cv_results_['param_vect__ngram_range'].shape
(3, 2)

Before that:

(Pdb) random_search.cv_results_['param_vect__ngram_range']
masked_array(data=[(1, 1), (1, 2), (1, 2)],
             mask=[False, False, False],
       fill_value='?',
            dtype=object)
(Pdb) random_search.cv_results_['param_vect__ngram_range'].dtype
dtype('O')
(Pdb) random_search.cv_results_['param_vect__ngram_range'].shape
(3,)

@adrinjalali
Copy link
Member

@MarcoGorelli do you think you'd have the bandwidth to submit a hotfix?

@MarcoGorelli
Copy link
Contributor

I can do, yes! Just checking, which is the expected output? A 1-d object array of tuples, or a 2d array on ints? Maybe the latter?

@adrinjalali
Copy link
Member

I think a 1D array, to make sure one can always convert the dict to a pandas DF.

@MarcoGorelli
Copy link
Contributor

MarcoGorelli commented Mar 4, 2024

Maybe this example is a good use-case for Polars, because that can handle conversion from a dict with 2-d arrays because of its List dtype

object datatype means you can't really do anything efficient with it later anyway


EDIT: ValueError: data type List(Int64) not supported by the interchange protocol 🤦

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

5 participants