-
-
Notifications
You must be signed in to change notification settings - Fork 25.8k
🔒 🤖 CI Update lock files for main CI build(s) 🔒 🤖 #28569
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
🔒 🤖 CI Update lock files for main CI build(s) 🔒 🤖 #28569
Conversation
f9848e4
to
2e0c18c
Compare
related issue: pytest-dev/pytest#11779 will try to figure out the fix |
Also the doc build failure is likely due to #28352 (comment) |
The 45,57c45,127
< 'param_vect__ngram_range': masked_array(data=[(1, 2), (1, 2), (1, 1), (1, 2), (1, 2), (1, 2), (1, 2),
< (1, 2), (1, 2), (1, 2), (1, 2), (1, 2), (1, 2), (1, 1),
< (1, 2), (1, 2), (1, 1), (1, 1), (1, 2), (1, 2), (1, 1),
< (1, 2), (1, 2), (1, 2), (1, 1), (1, 2), (1, 2), (1, 2),
< (1, 1), (1, 1), (1, 2), (1, 2), (1, 2), (1, 2), (1, 1),
< (1, 1), (1, 2), (1, 2), (1, 2), (1, 2)],
< mask=[False, False, False, False, False, False, False, False,
< False, False, False, False, False, False, False, False,
< False, False, False, False, False, False, False, False,
< False, False, False, False, False, False, False, False,
< False, False, False, False, False, False, False, False],
< fill_value='?',
< dtype=object),
---
> 'param_vect__ngram_range': masked_array(
> data=[[1, 2],
> [1, 2],
> [1, 1],
> [1, 2],
> [1, 2],
> [1, 2],
> [1, 2],
> [1, 2],
> [1, 2],
> [1, 2],
> [1, 2],
> [1, 2],
> [1, 2],
> [1, 1],
> [1, 2],
> [1, 2],
> [1, 1],
> [1, 1],
> [1, 2],
> [1, 2],
> [1, 1],
> [1, 2],
> [1, 2],
> [1, 2],
> [1, 1],
> [1, 2],
> [1, 2],
> [1, 2],
> [1, 1],
> [1, 1],
> [1, 2],
> [1, 2],
> [1, 2],
> [1, 2],
> [1, 1],
> [1, 1],
> [1, 2],
> [1, 2],
> [1, 2],
> [1, 2]],
> mask=[[False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False],
> [False, False]],
> fill_value='?',
> dtype=object),
66,67c136
< fill_value='?',
< dtype=object),
---
> fill_value=999999),
77,78c146
< fill_value='?',
< dtype=object),
---
> fill_value=1e+20),
90,91c158
< fill_value='?',
< dtype=object),
---
> fill_value=1e+20), |
taking a look - running the example with
Before that:
|
@MarcoGorelli do you think you'd have the bandwidth to submit a hotfix? |
I can do, yes! Just checking, which is the expected output? A 1-d object array of tuples, or a 2d array on ints? Maybe the latter? |
I think a 1D array, to make sure one can always convert the dict to a pandas DF. |
Maybe this example is a good use-case for Polars, because that can handle conversion from a dict with 2-d arrays because of its object datatype means you can't really do anything efficient with it later anyway EDIT: |
Update lock files.
Note
If the CI tasks fail, create a new branch based on this PR and add the required fixes to that branch.