Geodezinė kreivė
Geodezinė kreivė – tiesiausia linija jungianti du erdvės taškus. Bendrosiose Rymano erdvėse geodezinės kreivės sąvoką galima apibrėžti keliais būdais:
- kaip nulinio kreivio liniją;
- ekstremalaus ilgio kreivę;
- kreivę, kurios kryptimi nešamas liečiamasis vektorius išlieka pats sau lygiagretus.
Trimatėje Dekarto erdvėje
Trimatėje Dekarto erdvėje atstumo diferencialas (ds) yra nusakomas:
kur () yra trijų matmenų diferencialai. Specialioje reliatyvumo teorijoje dar yra pridedamas ketvirtasis matmuo ir tuomet diferencialinis atstumas įgauna tokį pavidalą:
Šioje išraiškoje išmetus matmenį grafikas atrodo taip:
Išraiška kūgiams: Perrašius ją taip: galime pastebėti, kad tai yra apskritiminė išraiška, kur nuline dimensija yra ketvirtoji dimensija. Paprastai astronomijoje tuo naudojantis yra nusakomi atstumai.
Metrinėje erdvėje
Geodezinė kreivė γ: I → M iš intervalo I iki metrinės erdvės M, kur v ≥ 0 yra konstanta bet kokiam t ∈ I:
Jeigu bet koks t1, t2 ∈I šią išraišką galime laikyti geodezine kreive metrinėje erdvėje. Tačiau metrinėje erdvėje gali egzistuoti tik konstantinės kreivės.
Rymano erdvėje
Apibendrintoje Rymano geometrijoje (erdvėje), kaip ir standartinėje metrinėje erdvėje geodezinė linija irgi yra trumpiausias atstumas jungiantis du erdvės taškus:
čia yra vektorius priklausantis nuo . Žinoma, kad geodezinė kreivė yra autolygiagreti kreivė t. y. lygiagreti savajam tangentiniam vektoriui, todėl:
∇ - čia yra Levi-Čivita sąryšis erdvėje M. Tuo remiantis, lokalinėmis koordinatėmis galima užrašyti geodezinę išraišką:
kur yra γ (t) kreivės koordinatės, o - Kristofelio simboliai. Ši formulė yra tik paprasčiausia diferencialinė išraiška koordinatėms. Ji turi sprendinį žinant jos pradinę padėtį ir pradinį greitį. Geodezinė kreivė, kaip ekstremali kreivė gali būti užrašyta veikimo funkcionalui:
šiam veiksmui geodezinė išraiška gaunama kaip Eulerio-Langražo judesio išraiška.
Jei kiekvieną geodezinę kreivę galima neribotai pratęsti, tai tokia Rymano erdvės savybė vadinama geodeziniu pilnumu.[1]
Geodezinės linijos kreivumas
Iš tikrųjų geodezinės linijos yra nulinio kreivumo linijos ir yra vadinamos tiesiausiomis linijomis. Jeigu du taškus sujungsime skirtingomis kreivėmis, tai gausime skirtingas diferencialinių lygčių sistemas, kurias išsprendę, turėsime skirtingus sprendinius. Tai reiškia, kad vektoriaus lygiagretaus nešimo iš vieno taško į kitą rezultatas priklauso nuo to, kokia kreive vektorius yra pernešamas. Todėl vektorių lygiagrečiai perkėlę net ir uždaru kontūru, galime gauti jau kitą vektorių.
Šaltiniai
- ↑ Riemanno geometrija(parengė Rimas Norvaiša). Visuotinė lietuvių enciklopedija (tikrinta 2024-02-03).