Jump to content

Abstract algebra

Frae Wikipedia, the free beuk o knawledge

In algebra, which is a broad diveesion o mathematics, abstract algebra is a common name for the sub-area that studies algebraic structurs in thair ain richt.

Sources

[eedit | eedit soorce]
  • Allenby, R. B. J. T. (1991), Rings, Fields and Groups, Butterworth-Heinemann, ISBN 978-0-340-54440-2
  • Artin, Michael (1991), Algebra, Prentice Hall, ISBN 978-0-89871-510-1
  • Burris, Stanley N.; Sankappanavar, H. P. (1999) [1981], A Course in Universal Algebra
  • Gilbert, Jimmie; Gilbert, Linda (2005), Elements of Modern Algebra, Thomson Brooks/Cole, ISBN 978-0-534-40264-8
  • Lang, Serge (2002), Algebra, Graduate Texts in Mathematics, 211 (Revised third ed.), New York: Springer-Verlag, ISBN 978-0-387-95385-4, MR 1878556
  • Sethuraman, B. A. (1996), Rings, Fields, Vector Spaces, and Group Theory: An Introduction to Abstract Algebra via Geometric Constructibility, Berlin, New York: Springer-Verlag, ISBN 978-0-387-94848-5
  • Whitehead, C. (2002), Guide to Abstract Algebra (2nd ed.), Houndmills: Palgrave, ISBN 978-0-333-79447-0
  • W. Keith Nicholson (2012) Introduction to Abstract Algebra, 4th edition, John Wiley & Sons ISBN 978-1-118-13535-8 .
  • John R. Durbin (1992) Modern Algebra : an introduction, John Wiley & Sons