Academia.eduAcademia.edu

Soft Actuators

2014

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Soft Actuators Kinji Asaka • Hidenori Okuzaki Editors Soft Actuators Materials, Modeling, Applications, and Future Perspectives Editors Kinji Asaka National Institute of Advanced Industrial Science and Technology (AIST) Osaka, Japan Hidenori Okuzaki University of Yamanashi Kofu, Japan ISBN 978-4-431-54766-2 ISBN 978-4-431-54767-9 (eBook) DOI 10.1007/978-4-431-54767-9 Springer Tokyo Heidelberg New York Dordrecht London Library of Congress Control Number: 2014949897 © Springer Japan 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface A variety of soft actuators has so far been developed not only from the fundamental viewpoint of basic material science, chemistry, physics, and biology but also from the engineering viewpoint for the practical applications to light-weight, low-cost, no-noise, less-pollution, and high-efficiency micro- and macro-artificial muscles and soft robotic systems. This book “Soft Actuators: Materials, Modeling, Applications, and Future Perspectives” reviews current and comprehensive research and development of soft actuators, and encompasses interdisciplinary studies of materials science and chemistry, mechanics, electronics, robotics, and bioscience. The topics of this book update the preceding book (in Japanese) entitled “Soft Actuators which Drive Future Technologies -Recent R&D Activities Focused on Polymers and Biomaterials-” edited by Prof. Yoshihito Osada (Riken) and Prof. Takahisa Taguchi (AIST) published by CMC Publishing Co., Ltd. in 2010. Chapters 1 and 2 of this book provide an overview of the current status of materials, properties, applications, and market of soft actuators, including background and history of soft actuators with typical references as milestones of the progress. Chapters 3–5 describe thermo-driven soft actuators using temperatureresponsive gels and nanofibers. Electro-driven soft actuators, which are also known as electro-active polymer (EAP) actuators, utilizing ionic and electric conductive polymers, carbon nanotubes, ionic liquid gels, dielectric elastomers and gels, and piezoelectric polymers were intensively discussed in Chaps. 6–15. On the other hand, light-driven soft actuators based on photochromism, photoisomerization, and photoredox reaction were described in Chaps. 16–18, while Chaps. 19 and 20 cover the topics on magneto-driven actuators, both of which enable operation of soft actuators by remote control. Furthermore, various motion models and control methods of soft actuators were examined in Chaps. 21–26, which are crucially important for the practical applications to Braille displays, soft micro-robots for medical applications, micro-pumps, and transducers evaluated in Chaps. 27–32. Finally, Chaps. 33–35 focus on next-generation bio-actuators based on biomaterials to provide future perspectives for artificial muscle technology of bio-nanomachines. v vi Preface These topics covered in this book not only promote further research and development of soft actuators, but also lead the way to their utilization and industrialization. Readers can obtain detailed, useful information about materials, methods of synthesis, fabrication, and measurements. The new ideas offered in this book will provide inspiration and encouragement to researchers and developers as they explore new fields of applications for soft actuators. Osaka, Japan Kofu, Japan June 2014 Kinji Asaka Hidenori Okuzaki Contents Part I 1 2 Introduction Progress and Current Status of Materials and Properties of Soft Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hidenori Okuzaki 3 Current Status of Applications and Markets of Soft Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kinji Asaka and Kayo Nakamura 19 Part II Materials of Soft Actuators: Thermo-Driven Soft Actuators 3 Electromagnetic Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Takeshi Yamauchi 4 Thermo-Responsive Nanofiber Mats Fabricated by Electrospinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hidenori Okuzaki 5 Self-Oscillating Gels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ryo Yoshida Part III 33 43 55 Materials of Soft Actuators: Electro-Driven Soft Actuators 6 Ionic Conductive Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kunitomo Kikuchi and Shigeki Tsuchitani 81 7 Conducting Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Keiichi Kaneto 95 vii viii Contents 8 Humidity-Sensitive Conducting Polymer Actuators . . . . . . . . . . . . 111 Hidenori Okuzaki 9 Carbon Nanotube/Ionic Liquid Composites . . . . . . . . . . . . . . . . . . . 127 Takushi Sugino, Kenji Kiyohara, and Kinji Asaka 10 Ion Gels for Ionic Polymer Actuators . . . . . . . . . . . . . . . . . . . . . . . 141 Masayoshi Watanabe, Satoru Imaizumi, Tomohiro Yasuda, and Hisashi Kokubo 11 Ionic Liquid/Polyurethane/PEDOT:PSS Composite Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Hidenori Okuzaki 12 Dielectric Gels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Toshihiro Hirai 13 Dielectric Elastomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 Seiki Chiba 14 Development of Actuators Using Slide Ring Materials and Their Various Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 Hiromitsu Takeuchi 15 Piezoelectric Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Yoshiro Tajitsu Part IV Materials of Soft Actuators: Light-Driven Soft Actuators 16 Spiropyran-Functionalized Hydrogels . . . . . . . . . . . . . . . . . . . . . . . 219 Kimio Sumaru, Toshiyuki Takagi, Shinji Sugiura, and Toshiyuki Kanamori 17 Photomechanical Energy Conversion with Cross-linked Liquid-Crystalline Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 Jun-ichi Mamiya 18 Photoredox Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 Tetsu Tatsuma Part V Materials of Soft Actuators: Magneto-Driven Soft Actuators 19 Magnetic Fluid Composite Gels . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 Toshihiro Hirai 20 Magnetic Particle Composite Gels . . . . . . . . . . . . . . . . . . . . . . . . . 271 Tetsu Mitsumata Contents Part VI ix Modeling 21 Molecular Mechanism of Electrically Induced Volume Change of Porous Electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 Kenji Kiyohara, Takushi Sugino, and Kinji Asaka 22 Material Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 Yutaka Toi 23 Distributed Parameter System Modeling . . . . . . . . . . . . . . . . . . . . 313 Kentaro Takagi, Gou Nishida, Bernhard Maschke, and Kinji Asaka 24 Modeling and Feedback Control of Electro-Active Polymer Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 Norihiro Kamamichi, Kentaro Takagi, and Shigenori Sano 25 Motion Design-A Gel Robot Approach . . . . . . . . . . . . . . . . . . . . . . 343 Mihoko Otake 26 Motion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 Minoru Hashimoto Part VII Applications 27 Application of Nano-Carbon Actuator to Braille Display . . . . . . . . 371 Isao Takahashi, Tomomasa Takatsuka, and Munemitsu Abe 28 Underwater Soft Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385 Kentaro Takagi, Zhi-Wei Luo, and Kinji Asaka 29 IPMC Actuator-Based Multifunctional Underwater Microrobots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 Shuxiang Guo and Liwei Shi 30 Medical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 Tadashi Ihara 31 Micro Pump Driven by a Pair of Conducting Polymer Soft Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 Masaki Fuchiwaki 32 Elastomer Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447 Mikio Waki and Seiki Chiba Part VIII 33 Next-Generation Bio-Actuators Tissue Engineering Approach to Making Soft Actuators . . . . . . . . 463 Toshia Fujisato, Shunya Takagi, Tomohiro Nakamura, and Hiroshi Tsutsui x Contents 34 ATP-Driven Bio-machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475 Daisuke Inoue, Arif Md. Rashedul Kabir, Kazuki Sada, Jian Ping Gong, and Akira Kakugo 35 Employing Cytoskeletal Treadmilling in Bio-Actuator . . . . . . . . . . 489 Ken-Ichi Sano, Ryuzo Kawamura, and Yoshihito Osada Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499