Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2012, Biological Psychiatry
…
6 pages
1 file
Annual Review of Neuroscience, 2012
Fragile X is the most common known inherited cause of intellectual disability and autism, and it typically results from transcriptional silencing of FMR1 and loss of the encoded protein, FMRP (fragile X mental retardation protein). FMRP is an mRNA-binding protein that functions at many synapses to inhibit local translation stimulated by metabotropic glutamate receptors (mGluRs) 1 and 5. Recent studies on the biology of FMRP and the signaling pathways downstream of mGluR1/5 have yielded deeper insight into how synaptic protein synthesis and plasticity are regulated by experience. This new knowledge has also suggested ways that altered signaling and synaptic function can be corrected in fragile X, and human clinical trials based on this information are under way.
Neuron, 2007
Fragile X syndrome (FXS) is the most common form of heritable mental retardation and the leading identified cause of autism. FXS is caused by transcriptional silencing of the FMR1 gene that encodes the fragile X mental retardation protein (FMRP), but the pathogenesis of the disease is unknown. According to one proposal, many psychiatric and neurological symptoms of FXS result from unchecked activation of mGluR5, a metabotropic glutamate receptor. To test this idea we generated Fmr1 mutant mice with a 50% reduction in mGluR5 expression and studied a range of phenotypes with relevance to the human disorder. Our results demonstrate that mGluR5 contributes significantly to the pathogenesis of the disease, a finding that has significant therapeutic implications for fragile X and related developmental disorders.
Changes in synaptic protein content and signaling in a mouse model of Fragile X Syndrome Fragile X Syndrome (FXS) is the most common inherited cause of intellectual disability (ID) in males and a significant cause of ID in females. In addition to ID, affected children may also exhibit hyperactivity, extreme anxiety in multiple forms, poor social communication (including poor eye contact and poor pragmatics), and other autism spectrum behaviors such as restricted interests and repetitive patterns of behavior. FXS is also characterized by a variety of distinct physical characteristics, including an enlarged head, protruding ears, and joint laxity (Learning About Fragile X Syndrome, 2013). Furthermore, a hallmark neuroanatomical abnormality of FXS brain is the overabundance of long, thin, and "tortuous" dendritic spinesthe postsynaptic aspect of excitatory glutamatergic synapses-which suggests that a fundamental synaptic abnormality underlies the syndrome's many symptoms. Nearly all cases of FXS are caused by transcriptional silencing of the Fragile X mental retardation I (Fmr1) gene on the X chromosome, which results from a CGG triplet repeat expansion of more than 200 copies within a non-protein coding segment of the gene corresponding to the 5' untranslated region of the transcribed messenger RNA (mRNA). However, some rare cases of FXS are caused by mutations in protein coding regions of Fmr1 (Collins et al., 2010). This abnormally expanded DNA segment inactivates the Fmr1 gene, leading to the lack of expression of the gene's encoded protein, the Fragile X mental retardation protein (FMRP) (Learning About Fragile X Syndrome, 2013). In accordance with this genetic inactivation, the Fmr1 knockout mouse was developed for use as an important tool in FXS research. Knockout mice exhibit similar behavioral and molecular phenotypes to humans with FXS, including learning deficits, hyperactivity, audiogenic seizures (thought to be a parallel to
Human Molecular Genetics, 2013
by guest on November 25, 2016 http://hmg.oxfordjournals.org/ Downloaded from 2 ABSTRACT Fragile X premutation-associated disorders, including Fragile X-associated Tremor Ataxia Syndrome, result from unmethylated CGG repeat expansions in the 5'untranslated region of the FMR1 gene. Premutation sized repeats increase FMR1 transcription but impair rapid translation of the fragile X protein, FMRP, which is absent in Fragile X Syndrome. Normally, FMRP binds to RNA and regulates metabotropic glutamate receptor (mGluR) mediated synaptic translation, allowing for dendritic synthesis of several proteins. FMRP itself is also synthesized at synapses in response to mGluR activation. However, the role of activity-dependent translation of FMRP in synaptic plasticity and Fragile X-premutation associated disorders is unknown. To investigate this question, we utilized a CGG knock-in mouse model of the Fragile X premutation with 120-150 CGG repeats in the mouse Fmr1 5'UTR. These mice exhibit increased Fmr1 mRNA production but impaired FMRP translational efficiency, leading to a modest reduction in basal FMRP expression. Cultured hippocampal neurons and synaptoneurosomes derived from CGG KI mice demonstrate impaired FMRP translation in response to the group I mGluR agonist DHPG. Electrophysiological analysis reveals enhanced mGluR mediated long term depression (mGluR-LTD) at CA3-CA1 synapses in acute hippocampal slices prepared from CGG KI mice relative to wild-type littermates, similar to Fmr1 knockout mice. However, unlike mGluR-LTD in mice completely lacking FMRP, mGluR-LTD in CGG knock-in mice remains dependent on new protein synthesis. These studies demonstrate partially overlapping synaptic plasticity phenotypes in mouse models of FXS and Fragile X premutation disorders and support a role for activity-dependent synthesis of FMRP in enduring forms of synaptic plasticity. by guest on November 25, 2016
Annual Review of Medicine, 2011
Fragile X syndrome (FXS) is the most common inherited form of mental retardation and a leading known cause of autism. It is caused by loss of expression of the fragile X mental retardation protein (FMRP), an RNA-binding protein that negatively regulates protein synthesis. In neurons, multiple lines of evidence suggest that protein synthesis at synapses is triggered by activation of group 1 metabotropic glutamate receptors (Gp1 mGluRs) and that many functional consequences of activating these receptors are altered in the absence of FMRP. These observations have led to the theory that exaggerated protein synthesis downstream of Gp1 mGluRs is a core pathogenic mechanism in FXS. This excess can be corrected by reducing signaling by Gp1 mGluRs, and numerous studies have shown that inhibition of mGluR5, in particular, can ameliorate multiple mutant phenotypes in animal models of FXS. Clinical trials based on this therapeutic strategy are currently under way. FXS is therefore poised to be the first neurobehavioral disorder in which corrective treatments have been developed from the bottom up: from gene identification to pathophysiology in animals to novel therapeutics in humans. The insights gained from FXS and other autismrelated single-gene disorders may also assist in identifying molecular mechanisms and potential treatment approaches for idiopathic autism. 411 Annu. Rev. Med. 2011.62:411-429. Downloaded from www.annualreviews.org by Copenhagen University on 06/03/11. For personal use only.
2016
Changes in synaptic protein content and signaling in a mouse model of Fragile X Syndrome Fragile X Syndrome (FXS) is the most common inherited cause of intellectual disability (ID) in males and a significant cause of ID in females. In addition to ID, affected children may also exhibit hyperactivity, extreme anxiety in multiple forms, poor social communication (including poor eye contact and poor pragmatics), and other autism spectrum behaviors such as restricted interests and repetitive patterns of behavior. FXS is also characterized by a variety of distinct physical characteristics, including an enlarged head, protruding ears, and joint laxity (Learning About Fragile X Syndrome, 2013). Furthermore, a hallmark neuroanatomical abnormality of FXS brain is the overabundance of long, thin, and "tortuous" dendritic spinesthe postsynaptic aspect of excitatory glutamatergic synapses-which suggests that a fundamental synaptic abnormality underlies the syndrome's many symptoms. Nearly all cases of FXS are caused by transcriptional silencing of the Fragile X mental retardation I (Fmr1) gene on the X chromosome, which results from a CGG triplet repeat expansion of more than 200 copies within a non-protein coding segment of the gene corresponding to the 5' untranslated region of the transcribed messenger RNA (mRNA). However, some rare cases of FXS are caused by mutations in protein coding regions of Fmr1 (Collins et al., 2010). This abnormally expanded DNA segment inactivates the Fmr1 gene, leading to the lack of expression of the gene's encoded protein, the Fragile X mental retardation protein (FMRP) (Learning About Fragile X Syndrome, 2013). In accordance with this genetic inactivation, the Fmr1 knockout mouse was developed for use as an important tool in FXS research. Knockout mice exhibit similar behavioral and molecular phenotypes to humans with FXS, including learning deficits, hyperactivity, audiogenic seizures (thought to be a parallel to
Proceedings of the National Academy of Sciences, 2002
Neurochemical Research, 2013
Fragile X syndrome (FXS) is caused by mutations in the fragile X mental retardation 1 (FMR1) gene. Most FXS cases occur due to the expansion of the CGG trinucleotide repeats in the 5′ untranslated region (UTR) of FMR1, which leads to hypermethylation and in turn silences the expression of FMRP (fragile X mental retardation protein). Numerous studies have demonstrated that FMRP interacts with both coding and non-coding RNAs and represses protein synthesis at dendritic and synaptic locations. In the absence of FMRP, the basal protein translation is enhanced and not responsive to neuronal stimulation. The altered protein translation may contribute to functional abnormalities in certain aspects of synaptic plasticity and intracellular signaling triggered by Gq-coupled receptors. This review focuses on the current understanding of FMRP function and potential therapeutic strategies that are mainly based on the manipulation of FMRP targets and knowledge gained from FXS pathophysiology.
Journal of Neurodevelopmental Disorders, 2009
Autism is an umbrella diagnosis with several different etiologies. Fragile X syndrome (FXS), one of the first identified and leading causes of autism, has been modeled in mice using molecular genetic manipulation. These Fmr1 knockout mice have recently been used to identify a new putative therapeutic target, the metabotropic glutamate receptor 5 (mGluR5), for the treatment of FXS. Moreover, mGluR5 signaling cascades interact with a number of synaptic proteins, many of which have been implicated in autism, raising the possibility that therapeutic targets identified for FXS may have efficacy in treating multiple other causes of autism.
Pharmacology & Therapeutics, 2010
Fragile X is the leading inherited cause of mental retardation and autism. Recent advances in our mechanistic understanding of the disease have led to the identification of the metabotropic glutamate receptor (mGluR) as a therapeutic target for the disease. These studies have revealed that core defects in multiple animal models can be corrected by down regulation of mGluR5 signaling. Although it remains to be seen if mGluR5 antagonists or related approaches will succeed in humans with fragile X, the progress in fragile X stands as a strong testament to the power of applying knowledge of basic neurobiology to understand pathophysiology in a genetically validated model of human psychiatric disease. These breakthroughs and several of the resulting drug development efforts are reviewed.
História Revista, 2020
Armenian Folia Anglistika, 2017
Vino e storia , 2023
Journal of Linguistic Anthropology, 1992
Text and Voice: The Rhetoric of Authority in the Middle Ages, ed. Marianne Børch (Odense: UP of Southern Denmark), 2004
Tópicos del Seminario, 2020
Springer eBooks, 2020
Banda aparte, 2000
International Journal of Thermophysics, 1991
International Journal of Transdisciplinary Knowledge, 2021
Effect of substrate temperature on Raman study and optical properties of GeOx/Si thin films, 2023
2005 IEEE 61st Vehicular Technology Conference
Derecho de la comunicación, selección de casos prácticos. Obra adaptada al Grado en Derecho , 2019
ChemElectroChem, 2019
Arabian Journal for Science and Engineering, 2018