JOUR NAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
AR TICLE NO .
203, 861]867 Ž1996.
0417
A R emark on the Kolmogorov]Stein Inequality*
Ha Huy Bang†
Institute of Mathematics, P.O. Box 631, Bo Ho, 10000 Hanoi, Vietnam
Submitted by J. L. Brenner
November 3, 1995
View metadata, citation and similar papersRateceived
core.ac.uk
In this paper, essentially developing the Stein method, we prove the Kolmogorov]Stein inequality for any Orlicz norm Žwith the same constants.. Q 1996
Academic Press, Inc.
1. INTR ODUCTION
A. N. Kolmogorov has given the following result w1x: Let
f 9Ž x ., . . . , f Ž n. Ž x . be continuous and bounded on R. Then
f Ž x .,
5 f Ž k . 5 `n F Ck , n 5 f 5 `ny k 5 f Ž n. 5 `k ,
n
where 0 - k - n, Ck, n s K nyk
rK nŽ nyk .,
Ki s
4
p
`
Ý Ž y1. jr Ž 2 j q 1. iq1
js0
for even i, while
Ki s
4
p
`
Ý
1r Ž 2 j q 1 .
iq1
js0
for odd i. Moreover the constants are best possible.
This result has been extended by E. M. Stein to the L p-norm w2x. The
Kolmogorov]Stein inequality and its variants are a problem of interest for
*Supported by the National Basic R esearch Program in Natural Science and by the
NCNST ‘‘Applied Mathematics.’’
†
E-mail address: hhbang@thevinh.ac.vn.
861
0022-247Xr96 $18.00
Copyright Q 1996 by Academ ic P ress, Inc.
All rights of reproduction in any form reserved.
862
HA HUY BANG
many mathematicians and have various applications Žsee, for example,
w3, 4x and their references ..
In this paper, essentially developing the Stein method w2x, we prove this
inequality for an arbitrary Orlicz norm 5 ? 5 F . The obtained result has been
successfully applied to proving the corresponding imbedding theorems
w5]7x for Sobolev]Orlicz spaces of infinite order and the result w8x for any
Orlicz norm.
2. R ESULTS
Let F Ž t .: w0, q`. ª w0, q`x be an arbitrary Young function w9]12x, i.e.,
Ž
F 0. s 0, F Ž t . G 0, F Ž t . ' 0, and F Ž t . is convex. Denote by
F Ž t . s sup ts y F Ž s . 4 ,
sG0
which is the Young function conjugate to F Ž t . and LF ŽR., the space of
measurable functions uŽ x . such that
<² u, ¨ :< s
H u Ž x . ¨ Ž x . dx
-`
for all ¨ Ž x . with r Ž ¨ , F . - `, where
r Ž ¨ , F. s
H F Ž < ¨ Ž x . <. dx.
Then LF ŽR. is a Banach space with respect to the Orlicz norm
5 u5 F s
sup
r Ž ¨ , F .F1
H u Ž x . ¨ Ž x . dx ,
which is equivalent to the Luxembung norm
½
5 f 5 ŽF . s inf l ) 0:
H F Ž < f Ž x . <rl. dx F 1 5 - `.
We have the following results w9x:
L EMMA 1.
Let u g LF ŽR. and ¨ g LF ŽR.. Then
H < u Ž x . ¨ Ž x . < dx F 5 u 5
L EMMA 2.
F 5 ¨ 5 ŽF . .
Let u g LF ŽR. and ¨ g L1ŽR.. Then
5 u) ¨ 5 F F 5 u 5 F 5 ¨ 5 1 .
R ecall that 5 ? 5 F s 5 ? 5 p when 1 F p - ` and F Ž t . s t p ; and 5 ? 5 F s
5 ? 5 ` when F Ž t . s 0 for 0 F t F 1 and F Ž t . s ` for t ) 1.
863
KOLMOGOR OV ] STEIN INEQUALITY
T HEOR EM 1. Let F Ž t . be an arbitrary Young function, f Ž x . and its
generalized deri¨ ati¨ e f Ž n. Ž x . be in LF ŽR.. Then f Ž k . Ž x . g LF ŽR. for all
0 - k - n and
5 f Ž k . 5 Fn F Ck , n 5 f 5 Fny k 5 f Ž n. 5 Fk .
Ž 1.
Proof. We begin to prove Ž1. with the assumption that f Ž k . Ž x . g LF ŽR.,
0 F k F n.
Fix 0 - k - n. It is known that r Ž ¨ , F . s 1 if and only if 5 ¨ 5 ŽF . s 1.
Therefore, by the definition we get
`
5 f Žk. 5 F s
Hy` f
sup
5 ¨ 5 ŽF .F1
Žk.
Ž x . ¨ Ž x . dx .
Let e ) 0. We choose a function ¨e Ž x . g LF ŽR. such that 5 ¨e 5 ŽF . s 1
and
`
Hy` f
Žk.
Ž x . ¨e Ž x . dx G 5 f Ž k . 5 F y e .
Ž 2.
Put
`
Hy` f Ž x q y . ¨ Ž y . dy.
Fe Ž x . s
e
Then Fe Ž x . g L`ŽR. by virtue of Lemma 1, and
FeŽ r . Ž x . s
`
Hy` f
Žr.
Ž x q y . ¨e Ž y . dy,
Ž 3.
0 F r F n.
Actually, for every function w Ž x . g C0`ŽR. it follows from the assumption and Lemma 1 that
r
² FeŽ r . Ž x . , w Ž x . : s Ž y1 . ² Fe Ž x . , w Ž r . Ž x . :
s Ž y1 .
r
s Ž y1 .
r
ž
`
ž
`
e
ž
`
`
s
Hy` Hy` f
s
¦H
e
`
y`
So we have proved Ž3..
`
Hy` ¨ Ž y . Hy` f Ž x q y . w
Hy` ¨ Ž y . Hy` f
ž
w Ž r . Ž x . dx
Žr.
Ž x . dx dy
e
s
`
/
`
Hy` Hy` f Ž x q y . ¨ Ž y . dy
`
Žr.
Žr.
/
/
Ž x q y . w Ž x . dx dy
/
Ž x q y . ¨e Ž y . dy w Ž x . dx
;
f Ž r . Ž x q y . ¨e Ž y . dy, w Ž x . .
864
HA HUY BANG
For all x g R, clearly,
< FeŽ r . Ž x . < F 5 f Ž r . Ž x q ? . 5 F 5 ¨e 5 Ž f . s 5 f Ž r . 5 F .
Now we prove continuity of FeŽ r . Ž x . on R Ž0 F r F n.. We show this for
r s 0 by contradiction: Assume that for some e ) 0, point x 0 , and subsequence < t k < ª 0
`
Hy` Ž f Ž x
0
q t k q y . y f Ž x 0 q y . . ¨e Ž y . dy G e ,
k G 1.
Ž 4.
Since f g LF we get easily f g L1, l o c ŽR.. Then for any n s 1, 2, . . . ,
f Ž t k q y . ª f Ž y . in L1Žyn, n.. Therefore, there exists a subsequence,
denoted again by t k 4 , such that f Ž t k q y . ª f Ž y . a.e. in Žyn, n.. Therefore, there exists a subsequence Žfor simplicity of notation we assume that
it is coincident with t k 4. such that f Ž x 0 q t k q y . ª f Ž x 0 q y . a.e. in
Žy`, `..
On the other hand, without loss of generality we may assume that
r Ž2 f, F . - `. Therefore by the Young inequality we get
f Ž x 0 q tk q y . y f Ž x 0 q y .
¨e Ž y .
F F Ž f Ž x 0 q tk q y . y f Ž x 0 q y .
F 12 F Ž 2 f Ž x 0 q y .
. q 12
. q F Ž < ¨e Ž y . < .
F Ž 2 f Ž x 0 q t k q y . . q F Ž < ¨e Ž y . < . .
The last expression belongs to L1ŽR., therefore by Lebesgue’s theorem we
have
`
H fŽ x
kª` y`
lim
0
q tk q y . y f Ž x 0 q y .
¨e Ž y . dy s 0,
which contradicts Ž4.. The cases 1 F r F n are proved similarly. The
continuity of FeŽ r . Ž x . has been proved.
The functions FeŽ r . Ž x . are continuous and bounded on R. Therefore, it
follows from the Kolmogorov inequality and Ž2. ] Ž3. that
Ž 5 f Žk. 5 F y e .
n
F < FeŽ k . Ž 0 . < n F 5 FeŽ k . 5 `n
F Ck , n 5 Fe 5 `ny k 5 FeŽ n. 5 `k .
Ž 5.
On the other hand,
5 Fe 5 ` F 5 f Ž x q y . 5 F 5 ¨e Ž y . 5 ŽF . s 5 f 5 F ,
Ž 6.
5 FeŽ n. 5 ` F 5 f Ž n. Ž x q y . 5 F 5 ¨e Ž y . 5 ŽF . s 5 f Ž n. 5 F .
Ž 7.
865
KOLMOGOR OV ] STEIN INEQUALITY
Combining Ž5. ] Ž7., we get
Ž 5 f Žk. 5 F y e .
n
F Ck , n 5 f 5 Fnyk 5 f Ž n. 5 Fk .
By letting e ª 0 we have Ž1..
To complete the proof, it remains to show that f Ž k . g LF ŽR., 0 k - n if f, f Ž n. g LF ŽR..
Let clŽ x . g C0`ŽR., clŽ x . G 0, clŽ x . s 0 for < x < G l and HclŽ x . dx s 1.
We put fl s f ) cl . Then fl g C`ŽR. because of f g L1, l o c ŽR.. Therefore,
flŽ k . s f ) clŽ k ., k G 0, and it is easy to check that flŽ n. s f Ž n. ) cl .
On the other hand, it follows from Lemma 2 that flŽ k . s f ) clŽ k . g
LF ŽR., k G 0. Therefore, by the fact proved above, we have
5 flŽ k . 5 Fn F Ck , n 5 fl 5 Fny k 5 flŽ n. 5 Fk ,
0 - k - n.
Therefore, since
5 fl 5 F F 5 f 5 F ? 5 cl 5 1 s 5 f 5 F ,
5 flŽ n. 5 F F 5 f Ž n. 5 F 5 cl 5 1 s 5 f Ž n. 5 F
we get that, for any 0 F k F n, the sequence flŽ k . is bounded in LF ŽR..
Now we prove that, for any 0 F k F n, there exists a subsequence, which is
)-convergent to some g k g LF ŽR.. ŽWe say that hl is )-convergent to h,
where hl, h g LF ŽR., if H hl¨ ª H h¨ for all ¨ g LF ŽR... We will show, for
example, the fact that fl is )-convergent to f by contradiction: Assume
that for some e 0 ) 0, ¨ g LF ŽR. and a subsequence l k ª 0,
HŽf
lk
Ž x . y f Ž x . . ¨ Ž x . dx G e 0 ,
k G 1.
Ž 8.
Then, it is known that fl ª f, l ª 0 in L1, l o c ŽR.. Therefore, there exists a
subsequence k m 4 Žfor simplicity we assume that k m s m. such that
flkŽ x . ª f Ž x . a.e.
We may assume that r Ž2 f, F . - `. Then it follows from Young’s
inequality that
< fl Ž x . y f Ž x . < < ¨ Ž x . < F 12 F Ž 2 < fl Ž x . < . q 12 F Ž 2 < f Ž x . < . q F Ž < ¨ Ž x . < . ,
moreover, the right side of the last inequality belongs to L1ŽR.. Therefore,
by virtue of Lebesgue’s theorem we get
lim
kª`
H
flkŽ x . y f Ž x . < ¨ Ž x . < dx s 0
because of flkŽ x . ª f Ž x . a.e., which contradicts Ž8..
866
HA HUY BANG
Finally, it follows from )-convergence fl ª f that for any w g C0`ŽR.
² flŽ k . Ž x . , w Ž x . : s Ž y1 . k ² fl Ž x . , w Ž k . Ž x . :
k
ª Ž y1 . ² f Ž x . , w Ž k . Ž x . : s ² f Ž k . Ž x . , w Ž x . : .
Therefore, since the )-convergence of some subsequence of flŽ k .4 to
g k g LF ŽR., we get f Ž k . s g k g LF ŽR. Ž0 - k - n.. So we have proved the
fact that f Ž k . g LF ŽR. for all 0 - k - n if f, f Ž n. g LF ŽR.. The proof is
complete.
Remark 1. To obtain Theorem 1 we have developed the Stein method
because, for example, the property w g Ž x q h. y g Ž x .xrh ª g 9Ž x . in the L p
mean Ž1 F p - `., which is used in w2x, holds for LF only if F Ž t . satisfies
the D 2-condition Žsee w10x..
Remark 2. For periodic functions we have:
T HEOR EM 2. Let F Ž t . be an arbitrary Young function, f Ž x . and its
generalized deri¨ ati¨ e f Ž n. Ž x . be in LF ŽT.. Then f Ž k . Ž x . g LF ŽT. for all
0 - k - n and
A f Ž k . A Fn F Ck , n A f A Fny k A f Ž n. A Fk ,
where T is the torus and A. A F is the corresponding norm.
Remark 3. By the representation w11, p. 135x
5 u 5 ŽF . s sup
5 ¨ 5 FF1
H u Ž x . ¨ Ž x . dx ,
it is easy to see that the obtained results still hold for any Luxemburg
norm.
R EFER ENCES
1. A. N. Kolmogorov, On inequalities between upper bounds of the successive derivatives of
an arbitrary function on an infinite interval, in ‘‘Amer. Math. Soc. Transl. Ser. 1,’’ Vol. 2,
pp. 233]243, Amer. Math. Soc., Providence, 1962.
2. E. M. Stein, Functions of exponential type, Ann. Math. 65 Ž1957., 582]592.
3. M. W. Certain and T. G. Kurtz, Landau-Kolmogorov inequalities for semigroups and
groups, Proc. Amer. Math. Soc. 63 Ž1977., 226]230.
4. V. M. Tikhomirov and G. G. Magaril-Il’jaev, Inequalities for derivatives, in ‘‘Kolmogorov
A. N. Selected Papers,’’ pp. 387]390, Nauka, Moscow, 1985.
5. Ha Huy Bang, Some imbedding theorems for the spaces of infinite order of periodic
functions, Math. Notes 43 Ž1988., 509]517.
KOLMOGOR OV ] STEIN INEQUALITY
867
6. Ha Huy Bang, On imbedding theorems for Sobolev spaces of infinite order, Mat. Sb. 178
Ž1988., 115]127.
7. Ha Huy Bang, Imbedding theorems for Sobolev spaces of infinite order, Acta Math.
Vietnam. 14 Ž1989., 17]29.
8. Ha Huy Bang, A property of infinitely differentiable functions, Proc. Amer. Math. Soc.
108 Ž1990., 73]76.
9. R . O’Neil, Fractional integration in Orlicz space, I, Trans. Amer. Math. Soc. 115 Ž1965.,
300]328.
10. W. Luxemburg, ‘‘Banach Function Spaces,’’ Thesis, Technische Hogeschool te Delft, The
Netherlands, 1955.
11. M. A. Krasnoselsky and Y. B. R utisky, ‘‘Convex Functions and Orlicz Spaces,’’ GITTL,
Moscow, 1958; English translation, Noordhoff, Groningen, 1961.
12. R . Adams, ‘‘Sobolev Spaces,’’ Academic Press, New York, 1975.