Bessel polynomials

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

Lua error in package.lua at line 80: module 'strict' not found. In mathematics, the Bessel polynomials are an orthogonal sequence of polynomials. There are a number of different but closely related definitions. The definition favored by mathematicians is given by the series (Krall & Frink, 1948)

y_n(x)=\sum_{k=0}^n\frac{(n+k)!}{(n-k)!k!}\,\left(\frac{x}{2}\right)^k

Another definition, favored by electrical engineers, is sometimes known as the reverse Bessel polynomials (See Grosswald 1978, Berg 2000).

\theta_n(x)=x^n\,y_n(1/x)=\sum_{k=0}^n\frac{(n+k)!}{(n-k)!k!}\,\frac{x^{n-k}}{2^{k}}

The coefficients of the second definition are the same as the first but in reverse order. For example, the third-degree Bessel polynomial is

y_3(x)=15x^3+15x^2+6x+1\,

while the third-degree reverse Bessel polynomial is

\theta_3(x)=x^3+6x^2+15x+15\,

The reverse Bessel polynomial is used in the design of Bessel electronic filters.

Properties

Definition in terms of Bessel functions

The Bessel polynomial may also be defined using Bessel functions from which the polynomial draws its name.

y_n(x)=\,x^{n}\theta_n(1/x)\,
y_n(x)=\sqrt{\frac{2}{\pi x}}\,e^{1/x}K_{n+\frac 1 2}(1/x)
\theta_n(x)=\sqrt{\frac{2}{\pi}}\,x^{n+1/2}e^{x}K_{n+ \frac 1 2}(x)

where Kn(x) is a modified Bessel function of the second kind, yn(x) is the ordinary polynomial, and θn(x) is the reverse polynomial (pg 7 and 34 Grosswald 1978). For example:[1]

y_3(x)=15x^3+15x^2+6x+1 = \sqrt{\frac{2}{\pi x}}\,e^{1/x}K_{3+\frac 1 2}(1/x)

Definition as a hypergeometric function

The Bessel polynomial may also be defined as a confluent hypergeometric function (Dita, 2006)

y_n(x)=\,_2F_0(-n,n+1;;-x/2)= \left(\frac 2 x\right)^{-n} U\left(-n,-2n,\frac 2 x\right)= \left(\frac 2 x\right)^{n+1} U\left(n+1,2n+2,\frac 2 x \right).

The reverse Bessel polynomial may be defined as a generalized Laguerre polynomial:

\theta_n(x)=\frac{n!}{(-2)^n}\,L_n^{-2n-1}(2x)

from which it follows that it may also be defined as a hypergeometric function:

\theta_n(x)=\frac{(-2n)_n}{(-2)^n}\,\,_1F_1(-n;-2n;-2x)

where (−2n)n is the Pochhammer symbol (falling factorial).

The inversion for monomials is given by

\frac{(2x)^n}{n!}=(-1)^n \sum_{j=0}^n \frac{n+1}{j+1}{j+1\choose n-j}L_j^{-2j-1}(2x)= \frac{2^n}{n!}\sum_{i=0}^n i!(2i+1){2n+1\choose n-i}x^i L_i^{(-2i-1)}\left(\frac 1 x\right).

Generating function

The Bessel polynomials have the generating function

\sum_{n=0} \sqrt{\frac 2 \pi} x^{n+\frac 1 2} e^x K_{n-\frac 1 2}(x) \frac {t^n}{n!}= e^{x(1-\sqrt{1-2t})}.

Recursion

The Bessel polynomial may also be defined by a recursion formula:

y_0(x)=1\,
y_1(x)=x+1\,
y_n(x)=(2n\!-\!1)x\,y_{n-1}(x)+y_{n-2}(x)\,

and

\theta_0(x)=1\,
\theta_1(x)=x+1\,
\theta_n(x)=(2n\!-\!1)\theta_{n-1}(x)+x^2\theta_{n-2}(x)\,

Differential equation

The Bessel polynomial obeys the following differential equation:

x^2\frac{d^2y_n(x)}{dx^2}+2(x\!+\!1)\frac{dy_n(x)}{dx}-n(n+1)y_n(x)=0

and

x\frac{d^2\theta_n(x)}{dx^2}-2(x\!+\!n)\frac{d\theta_n(x)}{dx}+2n\,\theta_n(x)=0

Generalization

Explicit Form

A generalization of the Bessel polynomials have been suggested in literature (Krall, Fink), as following:

y_n(x;\alpha,\beta):= (-1)^n n! \left(\frac x \beta\right)^n L_n^{(1-2n-\alpha)}\left(\frac \beta x\right),

the corresponding reverse polynomials are

\theta_n(x;\alpha, \beta):= \frac{n!}{(-\beta)^n}L_n^{(1-2n-\alpha)}(\beta x)=x^n y_n\left(\frac 1 x;\alpha,\beta\right).

For the weighting function

\rho(x;\alpha,\beta):= \, _1F_1\left(1,\alpha-1,-\frac \beta x\right)

they are orthogonal, for the relation

0= \oint_c\rho(x;\alpha,\beta)y_n(x;\alpha,\beta) y_m(x;\alpha,\beta)\mathrm d x

holds for mn and c a curve surrounding the 0 point.

They specialize to the Bessel polynomials for α = β = 2, in which situation ρ(x) = exp(−2 / x).

Rodrigues formula for Bessel polynomials

The Rodrigues formula for the Bessel polynomials as particular solutions of the above differential equation is :

B_n^{(\alpha,\beta)}(x)=\frac{a_n^{(\alpha,\beta)}}{x^{\alpha} e^{-\frac{\beta}{x}}} \left(\frac{d}{dx}\right)^n (x^{\alpha+2n} e^{-\frac{\beta}{x}})

where a(α, β)
n
are normalization coefficients.

Associated Bessel polynomials

According to this generalization we have the following generalized differential equation for associated Bessel polynomials:

x^2\frac{d^2B_{n,m}^{(\alpha,\beta)}(x)}{dx^2} + [(\alpha+2)x+\beta]\frac{dB_{n,m}^{(\alpha,\beta)}(x)}{dx} - \left[ n(\alpha+n+1) + \frac{m \beta}{x} \right] B_{n,m}^{(\alpha,\beta)}(x)=0

where 0\leq m\leq n. The solutions are,

B_{n,m}^{(\alpha,\beta)}(x)=\frac{a_{n,m}^{(\alpha,\beta)}}{x^{\alpha+m} e^{-\frac{\beta}{x}}} \left(\frac{d}{dx}\right)^{n-m} (x^{\alpha+2n} e^{-\frac{\beta}{x}})

Particular values


\begin{align}
y_0(x) & = 1 \\
y_1(x) & = x  +  1 \\
y_2(x) & = 3x^2+  3x  +  1 \\
y_3(x) & = 15x^3+ 15x^2+  6x  +  1 \\
y_4(x) & = 105x^4+105x^3+ 45x^2+ 10x  + 1 \\
y_5(x) & = 945x^5+945x^4+420x^3+105x^2+15x+1
\end{align}

none of which factor. Filaseta and Trifonov (Journal for Pure and Applied Mathematics, 550:125-140, 2002) proved that all Bessel polynomials are irreducible.

References

  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found. (See sequences OEISA001497, OEISA001498, and OEISA104548)
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  1. Wolfram Alpha example

External links