Cyclotruncated simplectic honeycomb

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

In geometry, the cyclotruncated simplectic honeycomb (or cyclotruncated n-simplex honeycomb) is a dimensional infinite series of honeycombs, based on the symmetry of the {\tilde{A}}_n affine Coxeter group. It is given a Schläfli symbol t0,1{3[n+1]}, and is represented by a Coxeter-Dynkin diagram as a cyclic graph of n+1 nodes with two adjacent nodes ringed. It is composed of n-simplex facets, along with all truncated n-simplices.

It is also called a Kagome lattice in two and three dimensions, although it is not a lattice.

In n-dimensions, each can be seen as a set of n+1 sets of parallel hyperplanes that divide space. Each hyperplane contains the same honeycomb of one dimension lower.

In 1-dimension, the honeycomb represents an apeirogon, with alternately colored line segments. In 2-dimensions, the honeycomb represents the trihexagonal tiling, with Coxeter graph CDel branch 11.pngCDel split2.pngCDel node.png. In 3-dimensions it represents the quarter cubic honeycomb, with Coxeter graph CDel branch 11.pngCDel 3ab.pngCDel branch.png filling space with alternately tetrahedral and truncated tetrahedral cells. In 4-dimensions it is called a cyclotruncated 5-cell honeycomb, with Coxeter graph CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png, with 5-cell, truncated 5-cell, and bitruncated 5-cell facets. In 5-dimensions it is called an cyclotruncated 5-simplex honeycomb, with Coxeter graph CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png, filling space by 5-simplex, truncated 5-simplex, and bitruncated 5-simplex facets. In 6-dimensions it is called a cyclotruncated 6-simplex honeycomb, with Coxeter graph CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png, filling space by 6-simplex, truncated 6-simplex, bitruncated 6-simplex, and tritruncated 6-simplex facets.

n {\tilde{A}}_n Name
Coxeter diagram
Vertex figure Image and facets
1 {\tilde{A}}_1 Apeirogon
CDel node 1.pngCDel infin.pngCDel node 1.png
Uniform apeirogon.png
Yellow and cyan line segments
2 {\tilde{A}}_2 Trihexagonal tiling
CDel branch 11.pngCDel split2.pngCDel node.png
Trihexagonal tiling vertfig.png
Rectangle
Uniform tiling 333-t01.png
With yellow and blue equilateral triangles,
and red hexagons
3 {\tilde{A}}_3 quarter cubic honeycomb
CDel branch 11.pngCDel 3ab.pngCDel branch.png
T01 quarter cubic honeycomb verf.png
Elongated
triangular antiprism
160pxQuarter cubic honeycomb.png
With yellow and blue tetrahedra,
and red and purple truncated tetrahedra
4 {\tilde{A}}_4 Cyclotruncated 5-cell honeycomb
CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png
120px
Elongated
tetrahedral antiprism
5-cell, truncated 5-cell,
bitruncated 5-cell
5 {\tilde{A}}_5 Cyclotruncated 5-simplex honeycomb
CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png
120px 5-simplex, truncated 5-simplex,
bitruncated 5-simplex
6 {\tilde{A}}_6 Cyclotruncated 6-simplex honeycomb
CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png
6-simplex, truncated 6-simplex,
bitruncated 6-simplex, tritruncated 6-simplex
7 {\tilde{A}}_7 Cyclotruncated 7-simplex honeycomb
CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png
7-simplex, truncated 7-simplex,
bitruncated 7-simplex
8 {\tilde{A}}_8 Cyclotruncated 8-simplex honeycomb
CDel branch 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png
8-simplex, truncated 8-simplex,
bitruncated 8-simplex, tritruncated 8-simplex,
quadritruncated 8-simplex

Projection by folding

The cyclotruncated (2n+1)- and 2n-simplex honeycombs and (2n-1)-simplex honeycombs can be projected into the n-dimensional hypercubic honeycomb by a geometric folding operation that maps two pairs of mirrors into each other, sharing the same vertex arrangement:

{\tilde{A}}_3 CDel branch.pngCDel 3ab.pngCDel branch 11.png {\tilde{A}}_5 CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 11.png {\tilde{A}}_7 CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 11.png {\tilde{A}}_9 CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 11.png {\tilde{A}}_{11} CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 11.png ...
{\tilde{A}}_2 CDel node.pngCDel split1.pngCDel branch 11.png {\tilde{A}}_4 CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel branch 11.png {\tilde{A}}_6 CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 11.png {\tilde{A}}_8 CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 11.png {\tilde{A}}_{10} CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 11.png ...
{\tilde{A}}_3 CDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node 1.png {\tilde{A}}_5 CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png {\tilde{A}}_7 CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png {\tilde{A}}_9 CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png ...
{\tilde{C}}_1 CDel node.pngCDel infin.pngCDel node 1.png {\tilde{C}}_2 CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png {\tilde{C}}_3 CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png {\tilde{C}}_4 CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png {\tilde{C}}_5 CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png ...

See also

References

  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)
  • Branko Grünbaum, Uniform tilings of 3-space. Geombinatorics 4(1994), 49 - 56.
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]