NumPy absolute()

The absolute() function is used to compute the absolute value of each element in an array.

Example

import numpy as np

array1 = np.array([-1, -2, 3, -4, 5])

# use absolute() to find absolute values of each element in array1 result = np.absolute(array1)
print(result) # Output: [1 2 3 4 5]

absolute() Syntax

The syntax of absolute() is:

numpy.absolute(array, out=None)

absolute() Arguments

The absolute() function takes following arguments:

  • array - the input array whose absolute values is computed
  • out (optional) - the output array where the result is stored

absolute() Return Value

The absolute() function returns an array that contains the absolute value of each element in the input array.


Example 1: Find Absolute Values of 2D Array Elements

import numpy as np

# create a 2D array
array1 = np.array([[-1, 2, -3.5],
                                [4, -5, -6]])

# compute the absolute values of each element in array1 result = np.absolute(array1)
print(result)

Output

[[1.  2.  3.5]
 [4.  5.  6. ]]

Here, we have used the absolute() function to compute the absolute values of each element in the array1 array.

The absolute value of -1 is 1, 2 is 2, -3.5 is 3.5 and so on.


Example 2: Use out to Store Output in Desired Location

import numpy as np

# create an array
array1 = np.array([-12, 23, -25, -41, -52])

# create an empty array with the same shape as array1
result = np.zeros_like(array1)

# store the result in out_array np.absolute(array1, out=result)
print(result)

Output

[12 23 25 41 52]

Here, the absolute() function is used with the out parameter set to result. This ensures that the result of computing the absolute values is stored in result.


Example 3: Working With Complex Numbers

import numpy as np

complex_nums = np.array([3 + 4j, -2 - 5j, 1 + 1j])

# calculate absolute value of complex_nums result = np.absolute(complex_nums)
print(result)

Output

[5.         5.38516481 1.41421356]

Here, the absolute() function is applied to the complex_nums array, and it returns the array result containing the magnitudes of the complex numbers.

The magnitudes are calculated as the absolute values of the complex numbers using the formula:

√(a^2 + b^2)

Here, a and b are the real and imaginary parts of the complex number, respectively.

Your builder path starts here. Builders don't just know how to code, they create solutions that matter.

Escape tutorial hell and ship real projects.

Try Programiz PRO
  • Real-World Projects
  • On-Demand Learning
  • AI Mentor
  • Builder Community