NumPy tanh()

The tanh() function calculates the hyperbolic tangent of each element in an array.

Example

import numpy as np

# create an array of values
values = np.array([-2, -1, 0, 1, 2])

# calculate the hyperbolic tangent of each value result = np.tanh(values)
print(result) # Output:[-0.96402758 -0.76159416 0. 0.76159416 0.96402758]

tanh() Syntax

The syntax of tanh() is:

numpy.tanh(x, out = None, where = True, dtype = None)

tanh() Arguments

The tanh() method takes following arguments:

  • x - an input array
  • out (optional) - the output array where the result will be stored
  • where (optional) - a boolean array or condition indicating where to compute the hyperbolic tangent
  • dtype (optional) - data type of the output array

tanh() Return Value

The tanh() method returns an array with the corresponding hyperbolic tangent values of its elements.


Example 1: Use of out and where in tanh()

import numpy as np

values = np.array([-1, 0, 1, 2, 3])

# create an output array of the same shape and data type as 'values', filled with zeros
result = np.zeros_like(values, dtype=float)  

# calculate the hyperbolic tangent where values>=0 and store in result np.tanh(values, out=result, where=(values >= 0))
print(result)

Output

[0.         0.         0.76159416 0.96402758 0.99505475]

Here,

  • out=result specifies that the output of the np.tanh() function should be stored in the result array
  • where=(values >= 0) specifies that the hyperbolic operation should only be applied to elements in values that are greater than or equal to 0.

Example 2: Use of dtype Argument in tanh()

import numpy as np

# create an array of values
values = np.array([-0.5, -0.2, 0, 0.2, 0.5])

# calculate the hyperbolic tangent of each value with a specific dtype
tanh_values_float = np.tanh(values, dtype=float)
tanh_values_complex = np.tanh(values, dtype=complex)

print("Hyperbolic tangents with 'float' dtype:")
print(tanh_values_float)

print("\nHyperbolic tangents with 'complex' dtype:")
print(tanh_values_complex)

Output

Hyperbolic tangents with 'float' dtype:
[-0.46211716 -0.19737532  0.          0.19737532  0.46211716]

Hyperbolic tangents with 'complex' dtype:
[-0.46211716+0.j -0.19737532+0.j  0.        +0.j  0.19737532+0.j
  0.46211716+0.j]

Here, by specifying the desired dtype, we can specify the data type of the output array according to our requirements.

Note: To learn more about the dtype argument, please visit NumPy Data Types.

Your builder path starts here. Builders don't just know how to code, they create solutions that matter.

Escape tutorial hell and ship real projects.

Try Programiz PRO
  • Real-World Projects
  • On-Demand Learning
  • AI Mentor
  • Builder Community