Menu
×
   ❮     
HTML CSS JAVASCRIPT SQL PYTHON JAVA PHP HOW TO W3.CSS C C++ C# BOOTSTRAP REACT MYSQL JQUERY EXCEL XML DJANGO NUMPY PANDAS NODEJS DSA TYPESCRIPT ANGULAR GIT POSTGRESQL MONGODB ASP AI R GO KOTLIN SASS VUE GEN AI SCIPY CYBERSECURITY DATA SCIENCE INTRO TO PROGRAMMING BASH RUST

Python Tutorial

Python HOME Python Intro Python Get Started Python Syntax Python Comments Python Variables Python Data Types Python Numbers Python Casting Python Strings Python Booleans Python Operators Python Lists Python Tuples Python Sets Python Dictionaries Python If...Else Python Match Python While Loops Python For Loops Python Functions Python Lambda Python Arrays Python Classes/Objects Python Inheritance Python Iterators Python Polymorphism Python Scope Python Modules Python Dates Python Math Python JSON Python RegEx Python PIP Python Try...Except Python String Formatting Python User Input Python VirtualEnv

File Handling

Python File Handling Python Read Files Python Write/Create Files Python Delete Files

Python Modules

NumPy Tutorial Pandas Tutorial SciPy Tutorial Django Tutorial

Python Matplotlib

Matplotlib Intro Matplotlib Get Started Matplotlib Pyplot Matplotlib Plotting Matplotlib Markers Matplotlib Line Matplotlib Labels Matplotlib Grid Matplotlib Subplot Matplotlib Scatter Matplotlib Bars Matplotlib Histograms Matplotlib Pie Charts

Machine Learning

Getting Started Mean Median Mode Standard Deviation Percentile Data Distribution Normal Data Distribution Scatter Plot Linear Regression Polynomial Regression Multiple Regression Scale Train/Test Decision Tree Confusion Matrix Hierarchical Clustering Logistic Regression Grid Search Categorical Data K-means Bootstrap Aggregation Cross Validation AUC - ROC Curve K-nearest neighbors

Python DSA

Python DSA Lists and Arrays Stacks Queues Linked Lists Hash Tables Trees Binary Trees Binary Search Trees AVL Trees Graphs Linear Search Binary Search Bubble Sort Selection Sort Insertion Sort Quick Sort Counting Sort Radix Sort Merge Sort

Python MySQL

MySQL Get Started MySQL Create Database MySQL Create Table MySQL Insert MySQL Select MySQL Where MySQL Order By MySQL Delete MySQL Drop Table MySQL Update MySQL Limit MySQL Join

Python MongoDB

MongoDB Get Started MongoDB Create DB MongoDB Collection MongoDB Insert MongoDB Find MongoDB Query MongoDB Sort MongoDB Delete MongoDB Drop Collection MongoDB Update MongoDB Limit

Python Reference

Python Overview Python Built-in Functions Python String Methods Python List Methods Python Dictionary Methods Python Tuple Methods Python Set Methods Python File Methods Python Keywords Python Exceptions Python Glossary

Module Reference

Random Module Requests Module Statistics Module Math Module cMath Module

Python How To

Remove List Duplicates Reverse a String Add Two Numbers

Python Examples

Python Examples Python Compiler Python Exercises Python Quiz Python Server Python Syllabus Python Study Plan Python Interview Q&A Python Bootcamp Python Certificate Python Training

Binary Search with Python


Binary Search

The Binary Search algorithm searches through a sorted array and returns the index of the value it searches for.


{{ msgDone }} 

{{ index }}

Run the simulation to see how the Binary Search algorithm works.

Binary Search is much faster than Linear Search, but requires a sorted array to work.

The Binary Search algorithm works by checking the value in the center of the array. If the target value is lower, the next value to check is in the center of the left half of the array. This way of searching means that the search area is always half of the previous search area, and this is why the Binary Search algorithm is so fast.

This process of halving the search area happens until the target value is found, or until the search area of the array is empty.

How it works:

  1. Check the value in the center of the array.
  2. If the target value is lower, search the left half of the array. If the target value is higher, search the right half.
  3. Continue step 1 and 2 for the new reduced part of the array until the target value is found or until the search area is empty.
  4. If the value is found, return the target value index. If the target value is not found, return -1.

Manual Run Through

Let's try to do the searching manually, just to get an even better understanding of how Binary Search works before actually implementing it in a Python program. We will search for value 11.

Step 1: We start with an array.

[ 2, 3, 7, 7, 11, 15, 25]

Step 2: The value in the middle of the array at index 3, is it equal to 11?

[ 2, 3, 7, 7, 11, 15, 25]

Step 3: 7 is less than 11, so we must search for 11 to the right of index 3. The values to the right of index 3 are [ 11, 15, 25]. The next value to check is the middle value 15, at index 5.

[ 2, 3, 7, 7, 11, 15, 25]

Step 4: 15 is higher than 11, so we must search to the left of index 5. We have already checked index 0-3, so index 4 is only value left to check.

[ 2, 3, 7, 7, 11, 15, 25]

We have found it!

Value 11 is found at index 4.

Returning index position 4.

Binary Search is finished.


Run the simulation below to see the steps above animated:

{{ msgDone }}
[
{{ x.dieNmbr }}
]

Implementing Binary Search in Python

To implement the Binary Search algorithm we need:

  1. An array with values to search through.
  2. A target value to search for.
  3. A loop that runs as long as left index is less than, or equal to, the right index.
  4. An if-statement that compares the middle value with the target value, and returns the index if the target value is found.
  5. An if-statement that checks if the target value is less than, or larger than, the middle value, and updates the "left" or "right" variables to narrow down the search area.
  6. After the loop, return -1, because at this point we know the target value has not been found.

The resulting code for Binary Search looks like this:

Example

Create a Binary Search algorithm in Python:

def binarySearch(arr, targetVal):
  left = 0
  right = len(arr) - 1

  while left <= right:
    mid = (left + right) // 2

    if arr[mid] == targetVal:
      return mid

    if arr[mid] < targetVal:
      left = mid + 1
    else:
      right = mid - 1

  return -1

mylist = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
x = 11

result = binarySearch(mylist, x)

if result != -1:
  print("Found at index", result)
else:
  print("Not found")
Run Example ยป

Binary Search Time Complexity

Each time Binary Search checks a new value to see if it is the target value, the search area is halved.

This means that even in the worst case scenario where Binary Search cannot find the target value, it still only needs \( \log_{2}n \) comparisons to look through a sorted array of \(n\) values.

Time complexity for Binary Search is: \( O( \log_{2} n ) \)

Note: When writing time complexity using Big O notation we could also just have written \( O( \log n ) \), but \( O( \log_{2} n ) \) reminds us that the array search area is halved for every new comparison, which is the basic concept of Binary Search, so we will just keep the base 2 indication in this case.

If we draw how much time Binary Search needs to find a value in an array of \(n\) values, compared to Linear Search, we get this graph:

Binary Search Time Complexity
×

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail:
sales@w3schools.com

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail:
help@w3schools.com

W3Schools is optimized for learning and training. Examples might be simplified to improve reading and learning. Tutorials, references, and examples are constantly reviewed to avoid errors, but we cannot warrant full correctness of all content. While using W3Schools, you agree to have read and accepted our terms of use, cookie and privacy policy.

Copyright 1999-2025 by Refsnes Data. All Rights Reserved. W3Schools is Powered by W3.CSS.