Menu
×
   ❮     
HTML CSS JAVASCRIPT SQL PYTHON JAVA PHP HOW TO W3.CSS C C++ C# BOOTSTRAP REACT MYSQL JQUERY EXCEL XML DJANGO NUMPY PANDAS NODEJS DSA TYPESCRIPT ANGULAR GIT POSTGRESQL MONGODB ASP AI R GO KOTLIN SASS VUE GEN AI SCIPY CYBERSECURITY DATA SCIENCE INTRO TO PROGRAMMING BASH RUST

Python Tutorial

Python HOME Python Intro Python Get Started Python Syntax Python Comments Python Variables Python Data Types Python Numbers Python Casting Python Strings Python Booleans Python Operators Python Lists Python Tuples Python Sets Python Dictionaries Python If...Else Python Match Python While Loops Python For Loops Python Functions Python Lambda Python Arrays Python Classes/Objects Python Inheritance Python Iterators Python Polymorphism Python Scope Python Modules Python Dates Python Math Python JSON Python RegEx Python PIP Python Try...Except Python String Formatting Python User Input Python VirtualEnv

File Handling

Python File Handling Python Read Files Python Write/Create Files Python Delete Files

Python Modules

NumPy Tutorial Pandas Tutorial SciPy Tutorial Django Tutorial

Python Matplotlib

Matplotlib Intro Matplotlib Get Started Matplotlib Pyplot Matplotlib Plotting Matplotlib Markers Matplotlib Line Matplotlib Labels Matplotlib Grid Matplotlib Subplot Matplotlib Scatter Matplotlib Bars Matplotlib Histograms Matplotlib Pie Charts

Machine Learning

Getting Started Mean Median Mode Standard Deviation Percentile Data Distribution Normal Data Distribution Scatter Plot Linear Regression Polynomial Regression Multiple Regression Scale Train/Test Decision Tree Confusion Matrix Hierarchical Clustering Logistic Regression Grid Search Categorical Data K-means Bootstrap Aggregation Cross Validation AUC - ROC Curve K-nearest neighbors

Python DSA

Python DSA Lists and Arrays Stacks Queues Linked Lists Hash Tables Trees Binary Trees Binary Search Trees AVL Trees Graphs Linear Search Binary Search Bubble Sort Selection Sort Insertion Sort Quick Sort Counting Sort Radix Sort Merge Sort

Python MySQL

MySQL Get Started MySQL Create Database MySQL Create Table MySQL Insert MySQL Select MySQL Where MySQL Order By MySQL Delete MySQL Drop Table MySQL Update MySQL Limit MySQL Join

Python MongoDB

MongoDB Get Started MongoDB Create DB MongoDB Collection MongoDB Insert MongoDB Find MongoDB Query MongoDB Sort MongoDB Delete MongoDB Drop Collection MongoDB Update MongoDB Limit

Python Reference

Python Overview Python Built-in Functions Python String Methods Python List Methods Python Dictionary Methods Python Tuple Methods Python Set Methods Python File Methods Python Keywords Python Exceptions Python Glossary

Module Reference

Random Module Requests Module Statistics Module Math Module cMath Module

Python How To

Remove List Duplicates Reverse a String Add Two Numbers

Python Examples

Python Examples Python Compiler Python Exercises Python Quiz Python Server Python Syllabus Python Study Plan Python Interview Q&A Python Bootcamp Python Certificate Python Training

Selection Sort with Python


Selection Sort

The Selection Sort algorithm finds the lowest value in an array and moves it to the front of the array.


{{ msgDone }}

The algorithm looks through the array again and again, moving the next lowest values to the front, until the array is sorted.

How it works:

  1. Go through the array to find the lowest value.
  2. Move the lowest value to the front of the unsorted part of the array.
  3. Go through the array again as many times as there are values in the array.

Manual Run Through

Before we implement the Selection Sort algorithm in Python program, let's manually run through a short array only one time, just to get the idea.

Step 1: We start with an unsorted array.

[ 7, 12, 9, 11, 3]

Step 2: Go through the array, one value at a time. Which value is the lowest? 3, right?

[ 7, 12, 9, 11, 3]

Step 3: Move the lowest value 3 to the front of the array.

[ 3, 7, 12, 9, 11]

Step 4: Look through the rest of the values, starting with 7. 7 is the lowest value, and already at the front of the array, so we don't need to move it.

[ 3, 7, 12, 9, 11]

Step 5: Look through the rest of the array: 12, 9 and 11. 9 is the lowest value.

[ 3, 7, 12, 9, 11]

Step 6: Move 9 to the front.

[ 3, 7, 9, 12, 11]

Step 7: Looking at 12 and 11, 11 is the lowest.

[ 3, 7, 9, 12, 11]

Step 8: Move it to the front.

[ 3, 7, 9, 11, 12]

Finally, the array is sorted.


Run the simulation below to see the steps above animated:

{{ msgDone }}
[
{{ x.dieNmbr }}
]

Implement Selection Sort in Python

To implement the Selection Sort algorithm in Python, we need:

  1. An array with values to sort.
  2. An inner loop that goes through the array, finds the lowest value, and moves it to the front of the array. This loop must loop through one less value each time it runs.
  3. An outer loop that controls how many times the inner loop must run. For an array with \(n\) values, this outer loop must run \(n-1\) times.

The resulting code looks like this:

Example

Using the Selection sort on a Python list:

mylist = [64, 34, 25, 5, 22, 11, 90, 12]

n = len(mylist)
for i in range(n-1):
  min_index = i
  for j in range(i+1, n):
     if mylist[j] < mylist[min_index]:
       min_index = j
  min_value = mylist.pop(min_index)
  mylist.insert(i, min_value)

print(mylist)
Run Example »

Selection Sort Shifting Problem

The Selection Sort algorithm can be improved a little bit more.

In the code above, the lowest value element is removed, and then inserted in front of the array.

Each time the next lowest value array element is removed, all following elements must be shifted one place down to make up for the removal.

Shifting other elements when an array element is removed.

These shifting operation takes a lot of time, and we are not even done yet! After the lowest value (5) is found and removed, it is inserted at the start of the array, causing all following values to shift one position up to make space for the new value, like the image below shows.

Shifting other elements when an array element is inserted.

Note: You will not see these shifting operations happening in the code if you are using a high level programming language such as Python or Java, but the shifting operations are still happening in the background. Such shifting operations require extra time for the computer to do, which can be a problem.


Solution: Swap Values!

Instead of all the shifting, swap the lowest value (5) with the first value (64) like below.

Shifting other elements when an array element is inserted.

We can swap values like the image above shows because the lowest value ends up in the correct position, and it does not matter where we put the other value we are swapping with, because it is not sorted yet.

Here is a simulation that shows how this improved Selection Sort with swapping works:


{{ msgDone }}

We will insert the improvement in the Selection Sort algorithm:

Example

The improved Selection Sort algorithm, including swapping values:

mylist = [64, 34, 25, 12, 22, 11, 90, 5]

n = len(mylist)
for i in range(n):
  min_index = i
  for j in range(i+1, n):
     if mylist[j] < mylist[min_index]:
       min_index = j
  mylist[i], mylist[min_index] = mylist[min_index], mylist[i]

print(mylist)
Run Example »

Selection Sort Time Complexity

Selection Sort sorts an array of \(n\) values.

On average, about \(\frac{n}{2}\) elements are compared to find the lowest value in each loop.

And Selection Sort must run the loop to find the lowest value approximately \(n\) times.

We get time complexity: \( O( \frac{n}{2} \cdot n) = {O(n^2)} \)

The time complexity for the Selection Sort algorithm can be displayed in a graph like this:

Selection Sort time complexity

As you can see, the run time is the same as for Bubble Sort: The run time increases really fast when the size of the array is increased.


×

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail:
sales@w3schools.com

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail:
help@w3schools.com

W3Schools is optimized for learning and training. Examples might be simplified to improve reading and learning. Tutorials, references, and examples are constantly reviewed to avoid errors, but we cannot warrant full correctness of all content. While using W3Schools, you agree to have read and accepted our terms of use, cookie and privacy policy.

Copyright 1999-2025 by Refsnes Data. All Rights Reserved. W3Schools is Powered by W3.CSS.