連続写像
この記事には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。 |
数学において、関数または写像 f が、定義域のある点 a において連続(れんぞく、英: continuous)であるとは、f が a において極限を保つこと、平たく言えば、f の入力 x を a に「限りなく近づける」ことで、その近づけ方によらず、出力 f(x) をも f(a) に「限りなく近づける」ことができるということである。特に定義域の全ての点において連続であるとき、 f は連続関数(れんぞくかんすう、英: continuous function)または連続写像(れんぞくしゃぞう)という。連続でないことは不連続(ふれんぞく、英: discontinuous)という。
連続性は多項式関数や指数関数といった多くの初等関数が備える性質であり、実数値関数では連結集合[注 1]の上で中間値の定理、コンパクト集合[注 2]の上で最大値最小値定理が成り立つほか、微分可能であるための必要条件や積分可能であるための十分条件でもあるなど、解析学的に重要な性質を伴う。
連続性は位相空間論において一般化され、近傍系や開集合系などの位相的構造を逆像で保つこととして定義され(後述)、この意味で連続写像は位相的構造についての準同型である。そのため、位相空間の間の写像が、双方向に位相的構造を保つ写像、つまり同相写像であることは、逆も連続な全単射連続写像であることと同値である。さらに、連続写像は位相空間の圏における射となる。また、連続性はホモトピーの定義などを通じて位相幾何学の土台をなす。
実関数の連続性
実関数、すなわち定義域と値域がともに実数直線上にある関数 f(x) が x = a を含む区間で定義されているとき、座標平面上にそのグラフを描くことができるが、a における連続性とは、『数直線上の左から x = a に近づいたときの極限値と、数直線上の右から x = a に近づいたときの極限値が一致して、しかも f(a) に等しいこと』[1]であり、関数の極限を用いて以下の等式で定義される[1][注 3]。
二次関数は連続関数である。 - 例
- 実数上で定義された二次関数 f(x) = x2 は任意の実数 a において連続である。実際、任意の ε > 0 に対して、δ = √a2 + ε − √a2 > 0 とすることで、|x − a| < δ を満たす x について、|x2 − a2| < ε が成り立つ[注 5]。
- 床関数 f(x) = ⌊x⌋ は点 a = 0 において不連続である。実際、任意の δ > 0 に対して、−δ < x < 0 を満たす x について |⌊x⌋ − 0| ≥ 1 であり、ε ≤ 1 に対して「|x − a| < δ ならば |f(x) − f(a)| < ε である」ような δ が存在しない。
距離空間の間の写像の連続性
一般の距離空間 (X, dX) と (Y, dY) の間の写像 f: X → Y についても、a ∈ X における連続性の定義は
「連続関数」の例文・使い方・用例・文例
連続関数と同じ種類の言葉
- 連続関数のページへのリンク