タグ

アルゴリズムに関するarcenemy7334のブックマーク (16)

  • ITエンジニアなら知っておきたい、今更聞けないアルゴリズムの種類一覧 - paiza times

    Photo by Oferico 皆さんはアルゴリズムやデータ構造について勉強したことはありますか?そして、基的なアルゴリズムについて、どのようなものがあって、どのようなときに使うとよいかといったことを説明することができますか? 仕事をしていると、プログラミング言語等の勉強や業務に忙しくて、正直アルゴリズムどころではないという場合がほとんどでしょう。しかし、いつか勉強しようと思っていたけど、基的なアルゴリズムにどんなものがあるのかなんて今更聞けないな……ということもあるかと思います。 今回はそんな方に向けて、基的なアルゴリズムの一部の概要に加え、アルゴリズムの勉強に役立つサイト、書籍をご紹介したいと思います。 ■アルゴリズムを学ぶ意味 例えば、ソート等については、通常はすでにソート関数があるので、自分で作らなくても済む=アルゴリズムも勉強しなくていいと思ってしまうかもしれません。しか

    ITエンジニアなら知っておきたい、今更聞けないアルゴリズムの種類一覧 - paiza times
  • PageRankアルゴリズムを使った人事評価実験 | 株式会社サイバーエージェント

    2-2-1.一般的な360度評価による評価方法 問題点 一般的に評価プロセスが公開されていないため、最終評価までのプロセスが不透明である 全員が全員を評価するのは多数の社員がいる場合は不可能である ランダム抽出によるお互いの評価を行うと、まったく違う専門分野を評価したり、まったく関わりあいのない人を評価することになり精度が下がる 2-2-2.専門分野での評価者による評価方法 問題点 *評価者になる人材の不足 高い専門スキル、会社とのビジョンマッチ、メンバーからのその専門分野での高い信頼の全てを備えている人材が専門分野毎に必要。 さらに、評価の納得性を保つためにはメンバーからの信頼がある人材ではないと評価できない。 *評価者によって評価ポイントの違いがある 同じ分野の技術者でも、スキルの価値をどこに置いているかというスタンスの違いから評価ポイントにゆらぎが発生する。 さらに評価者自体

  • 僕がGunosyの社長だったらこのように謝罪文を書きます : けんすう日記

    Gunosyが炎上? Gunosy(グノシー)という素敵なサービスがあって、僕も結構活用させてもらっているんですが、最近炎上しているようです。リリースして間もないのに炎上して話題になるくらいのサービスになってて、すごいなあ、と思っています。 炎上内容はいろいろあるんですが、大枠にまとめると 1: Gunosyってはてなブックマークと近すぎないか? 2: Gunosyへの批判記事がGunosyにあがってこないのは検閲しているのでは? だと思っています。 で、1に関しては、おもしろい記事をリコメンドするサービスであり、かつリテラシー高い人向けになるとすると、そうなるだろうなあ、という気が個人的にはしました。どちらかというと、はてなブックマークが機能しすぎているといいますか、ネット上にあるおもしろい記事があがってきやすいのですよね。 これはユーザーが増えてきて、Gunosy側のリソースやアルゴリ

    僕がGunosyの社長だったらこのように謝罪文を書きます : けんすう日記
  • スパコンで力任せに数独の難しい問題を作<del>る</del>ったつもりが簡単な問題だった件

    どうやら人間の手で解いたら、簡単に解けてしまうようです。 ここでの難易度の定義に含めていない解法(n国同盟など)を使うと、難しくない問題になっているのかもしれません。 その後調べたところ、基テクニックだけで解けてしまうことがわかりました。 Pencil Marksが唯一残ったものしか確定しない、というDeterministic Solverを使っていたのが原因で、 難しくない問題を「難しい」と誤判定してしまったようです。 3月13日版よりだいぶ難易度があがったはずです。 概要 スパコンを使って力任せに数独の難しい問題を作ってみたところ、 2013年3月現在、おそらく世界で一番難しい問題を作ることに成功した失敗した。 上図がスパコンを用いて作られた、おそらく世界で一番難しい問題(2013年3月現在)。 後述する難易度の定義では、深さが10、通常幅が183530、平均幅が約100571である

  • 古くて新しい自動迷路生成アルゴリズム - やねうらおブログ(移転しました)

    最近、ゲーム界隈ではプロシージャルテクスチャー生成だとか、プロシージャルマップ生成だとか、手続き的にゲーム上で必要なデータを生成してしまおうというのが流行りであるが、その起源はどこにあるのだろうか。 メガデモでは初期のころから少ないデータでなるべくど派手な演出をするためにプロシージャルな生成は活用されてきたが、ゲームの世界でプロシージャル生成が初めて導入されたのは、もしかするとドルアーガの塔(1984年/ナムコ)の迷路の自動生成かも知れない。 なぜ私が迷路のことを突然思い出したのかと言うと、最近、Twitterで「30年前、父が7年と数ヶ月の歳月をかけて描いたA1サイズの迷路を、誰かゴールさせませんか。」というツイートが話題になっていたからである。 この迷路を見て「ああ、俺様も迷路のことを書かねば!俺様しか知らない(?)自動迷路生成のことを後世に書き残さねば!」と誰も求めちゃいない使命感が

    古くて新しい自動迷路生成アルゴリズム - やねうらおブログ(移転しました)
  • 計量学習を用いた画像検索エンジンとアニメ顔類似検索v3について - デー

    まだgithubにはpushしていないのですが、さいきょうの組み込み型画像検索エンジンotamaに計量学習を用いて与えられたデータにあった画像間の距離関数を学習してそれを使って検索するというドライバを入れたので、先行的なデモとしてアニメ顔類似検索v3を作ってみました。 計量学習は、ベクトル間の距離の計り方を機械学習で決めるみたいな分野です。 アニメ顔類似検索v3 AnimeFace Search v3 - Otama LMCA_VLAD_HSV Driver randomボタンを押すと顔画像がランダムに出るのでどれかクリックするとそれをクエリに検索します。color weightは色の重みを調節するパラメーターで、1にすると色だけで検索します。0にすると形状やテクスチャだけで検索します。結果画像の上の数字は類似度的なもので、その横のgglは元画像をGoogle Search by Imag

  • 高層ビルのエレベーターホールには、なぜ階数表示がないのか - 本当は怖いHPC

    以前に高橋幸雄先生の授業で聞いて非常に面白いと思ったこと。 オフィスビルとかホテルとか、エレベーターが何基も設置されているビルの場合、エレベーターホールに階数表示が無いことが多い。エレベーターホールで画像検索してみればわかると思う。 これはなぜだろうか。 その理由は、「客がいても、その階を通過することができるようにするため」だ。 基的に、多数のエレベーターを効率よく動かすのは難しい。工夫された高度なアルゴリズムが使われていることが多い。目標は「客の平均待ち時間を短くする」ことだ。ある階でボタンが押された場合、どのエレベーターがその客を迎えに行くか、という判断が平均待ち時間に大きな影響を与える。難しいアルゴリズムの中で、この点がもっとも重要なところだ。 高層ビルの場合、エレベーターはかなりの速度で走っている。既に客を乗せて走っているエレベーターが他の客を乗せるために停止すると、減速→停止→

    高層ビルのエレベーターホールには、なぜ階数表示がないのか - 本当は怖いHPC
    arcenemy7334
    arcenemy7334 2012/08/26
    なんでも明示すりゃ納得させられるわけではないもんね
  • 『世界でもっとも強力な9のアルゴリズム』で頭を鍛える - HONZ

    著者の定義によると、アルゴリズムとは「問題を解決するために必要な手順を正確に規定したレシピ」である。コンピュータ・サイエンスを専門とする大学教授の手による書は、現在当たり前のように使われている偉大なコンピュータ・アルゴリズムがなぜ必要とされたのか、どのように考え出されたか、そして、それが実際にどのような仕組みで動いているのかを教えてくれる。 このように紹介すると、コンピュータやプログラミングが苦手な人は手が遠のいてしまうかもしれないが、どうかご安心を。書を楽しむのに、コンピュータプログラミングやコンピュータ科学の知識は必要ない。必要なのはじっくりと考えることだけだ。 一口にサイエンスといっても面白いポイントはそれぞれに異なるが、書の面白みは間違いなく、過去の偉人たちの難問への挑戦を疑似体験できるところにある。その面白みを満喫するためにも、頭から煙を出しながらじっくりと考えながら読む

    『世界でもっとも強力な9のアルゴリズム』で頭を鍛える - HONZ
  • 情報系修士にもわかるダブル配列 - アスペ日記

    最近話題の「日本語入力を支える技術」を途中まで読んだ。 3章がものすごく気合いが入っている。 trie(トライ)というデータ構造の2つの実装、「ダブル配列」と「LOUDS」について詳しく説明がされている。 ダブル配列については、ぼくは以前論文を読んで勉強しようとしたのだが、その時は難しくてあきらめた覚えがある。しかし、このの説明を読むことで理解ができた。 ありがたい。 感銘を受けたので、このを教材に友達と2人勉強会をした。 この2人勉強会というのは、ぼくが復習を兼ねて友達に教えるというのがだいたいのスタイル。 しかし、いざやってみるといろいろと難しい。 次のようなところでひっかかるようだ。 例のサイズが小さく、イメージを喚起するのが難しい。 最初の図のノード番号と、最終的なダブル配列上の位置が異なるため、混乱する。 単語終端について言及がないので、どのノードが単語を表しているかがわから

    情報系修士にもわかるダブル配列 - アスペ日記
  • PhotoShopで最適な画像保存をする為に。ニアレストネイバー法やバイキュービック法でのリサイズやJPEG圧縮などを検証したよ。 / Maka-Veli .com

    どうも。某サイトのクオリティにがっかりしてる松です。 これからは自分らしく普段通り書いていこうと思いますので宜しくお願い致します。 さて、今回はPhotoShopの画質変換・圧縮についてです。 ニアレストネイバー法、バイリニア法、バイキュービック法でのリサイズと、保存時の圧縮率パーセンテージ別、更に写真の特徴なんかとを比較すると何か新しい発見があるかなぁとふと思いましたので検証してみます。そもそも、それ何?という方も、簡単な説目を書いておきますので合わせてご覧ください。 それと「プログレッシブ、プロファイル、カラーマネージメント」なんかが複合的に絡むとややこしいので割愛。 一番シンプルなアルゴリズムなんじゃないでしょうか? 変更前の座標と、変更後の座標を、ピクセル単位で計算し移動させ、そのピクセルに対して変更前の色を割り当てる。 ドットをそのまま拡大、縮小する ような感覚で

  • グーグルはコードの品質向上のため「バグ予測アルゴリズム」を採用している

    グーグルでは、社内のプログラマによって作り出される大量のコードの品質を保つため、チェックイン前にユニットテストとコードレビューが行われているそうです。しかし、コードが大量になってくると、ユニットテストやレビューをすり抜けるバグも少なからず発生します。 そこでコードの品質をさらに高めるために、グーグルでは「バグ予測アルゴリズム」を採用。バグがありそうな部分をレビュアーにアドバイスする仕組みを採用したとのこと。 そのバグ予測アルゴリズムとはどんなものなのか。Google Engineering Toolsブログに投稿されたエントリ「Bug Prediction at Google」(グーグルにおけるバグ予測)で説明されています。 ソースコードの修正履歴を基に予測 コードの中にバグがありそうな箇所を分析する手法としては、「ソフトウェアメトリクス」がよく用いられます。これはコードを静的に分析して、

    グーグルはコードの品質向上のため「バグ予測アルゴリズム」を採用している
  • データマイニングで使われるトップ10アルゴリズム - データサイエンティスト上がりのDX参謀・起業家

    2006年のデータマイニング学会、IEEE ICDMで選ばれた「データマイニングで使われるトップ10アルゴリズム」に沿って機械学習の手法を紹介します(この論文は@doryokujin君のポストで知りました、ありがとうございます!)。 必ずしも論文の内容には沿っておらず個人的な私見も入っていますので、詳細は原論文をご確認下さい。また、データマイニングの全体観をサーベイしたスライド資料がありますので、こちらも併せてご覧下さい。 データマイニングの基礎 View more presentations from Issei Kurahashi 1. C4.5 C4.5はCLSやID3といったアルゴリズムを改良してできたもので、決定木を使って分類器を作ります。決定木といえばCARTが良く使われますが、CARTとの違いは以下のとおりです。 CARTは2分岐しかできないがC4.5は3分岐以上もできる C

    データマイニングで使われるトップ10アルゴリズム - データサイエンティスト上がりのDX参謀・起業家
  • DextroII先生のロマサガ閃きシステムのアルゴリズム講座

    つしま(あなたの原稿はどこから) @chartreuse37 @DextroII 先生ッ! サガシリーズの閃きシステムの概念ってどうなってるんですか!? って弟が言ってました よかったらちらっと教えてください 2011-11-13 18:26:54

    DextroII先生のロマサガ閃きシステムのアルゴリズム講座
  • 作るプログラムの機能や性能で勝負したい。そうだ、データベースを勉強しよう - きしだのはてな

    さて、アルゴリズムの勉強のしかたと、ラムダ計算の勉強のしかたの目星をつけました。 アルゴリズムの勉強のしかた - きしだのはてな ラムダ計算の勉強のしかた、プログラム意味論 - きしだのはてな これでここで書いたプログラムの理論の基礎は勉強できたことになるんじゃないかと思います。 プログラムの理論とはなにか - きしだのはてな ところで、プログラムの勉強地図としてこういう図を書きました。 で、ハードウェアまわりについても、プロセッサを支える技術やネットワークはなぜつながるのかでひととおり勉強したとしましょう。 じゃあ次は、アジャイルか?テストか?UIデザインか?となるわけですが、やはりプログラマなら、プログラムの作り方や使いやすさの前に、作るプログラムの機能や性能で勝負したいじゃないですか。 いい感じに関数が分割できるよとか、読みやすい名前がつけれるよとか、効率よく仕事して定時に帰れるよと

    作るプログラムの機能や性能で勝負したい。そうだ、データベースを勉強しよう - きしだのはてな
  • アルゴリズムの勉強のしかた - きしだのHatena

    この記事で、アルゴリズムの勉強はアルゴリズムカタログを覚えることじゃないよということを書きました。 プログラムの理論とはなにか アルゴリズムの勉強というのは、スポーツで言えば腕立て伏せや走り込みみたいな基礎体力を養うようなもので、「ソートなんか実際に自分で書くことないだろう」とかいうのは「サッカーは腕つかわないのに腕立ていらないだろう」とか「野球で1kmも走ることなんかないのに長距離の走り込みいらないだろう」とか言うようなものです。 Twitterでアルゴリズムの勉強とはなにかと尋ねられて、「アルゴリズムの基的なパターンを知って、それらの性質の分析のしかたをしって、いろいろなアルゴリズムでどのように応用されているか知って、自分が組むアルゴリズムの性質を判断できるようになることだと思います。 」と答えたのですが、じゃあ実際どういうで勉強すればいいか、ぼくの知ってるからまとめてみました。

    アルゴリズムの勉強のしかた - きしだのHatena
  • ゲームの作り方やアルゴリズムについてAppStoreカテゴリ別に整理してみました - もとまか日記乙

    今年の東京ゲームショーの入場者数が過去最高だったそうで。東京ゲームショウ2011の入場者数が過去最高の22万2668人を記録【TGS2011】 - ファミ通.com ゲームが盛り上がってきてるかも?ってことで、とても嬉しいニュースです。偶然ですがちょうど先日、以下を書きました。 あなたの「隙間時間」を埋めてくれる無料iPhoneゲーム30選 色々とゲームで遊んでたら、ゲーム開発について色々と調べたくなったので、調べてみたメモを以下にまとめてみました。 ゲームの作り方目次(AppStoreカテゴリ別) 以下、AppStoreのゲームカテゴリ別に整理した目次です。並びはAppStoreでの表示順です(2011/9/20時点) AppStoreカテゴリジャンプ先アーケードシューティングアクションアクション|Unityアドベンチャーアドベンチャーボード、カジノボード、カジノシミュレーションシミュレ

  • 1