タグ

mathに関するgan2のブックマーク (10)

  • YouTube - 正多面体の書き方[ちょっとTea Time..!!]

  • Webで数式を簡単に使う方法 | Okumura's Blog

    以前Webで数式を書く方法について書いたが,今なら Google Chart Tools のAPIを使うほうが簡単。例: <img src="http://chart.apis.google.com/chart?cht=tx&amp;chl=x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}" alt="" /> URL中に使えない文字は%16進2桁で表記する。例えばスペースは試した限りではそのまま使えたが用心するなら%20とする。詳しくはGoogleの解説 Mathematical (TeX) Formulas 参照。 問題点:ピクセルサイズの指定はできるが,標準の2倍の大きさにしたいという指定はできないみたい。

  • 0.999・・・は1と等しいか - hiroyukikojima’s blog

    刊行からだいぶたってしまったが、吉永良正さんの『アキレスとカメ』講談社というたいへん楽しいを紹介しよう。 吉永さんは、ぼくが東京出版の受験雑誌『大学への数学』や『高校への数学』に連載し出した頃、同じように連載を持った人だが、サイエンスライターとしては大先輩であり、すばらしいをたくさん書き、また翻訳もしている。現在は、大東文化大学の先生をされているので、ライターから大学教員になった、という経歴も似ており、勝手に親近感を抱いている。何度か対談をさせていただき、いっしょにお酒を飲んだこともあるので、知人と言ってもいいと思う。ライターとして気骨を持ったかたで、物書きとして生きていく上での心構えなどを教えていただいた。 アキレスとカメ 作者: 吉永良正,大高郁子出版社/メーカー: 講談社発売日: 2008/07/02メディア: 単行購入: 19人 クリック: 395回この商品を含むブログ (1

    0.999・・・は1と等しいか - hiroyukikojima’s blog
    gan2
    gan2 2009/03/29
  • 「 2 」か「 9 」で割ってみる - ナイトシフト

    先日、飲んでたときに「 9 」という数字が面白いというになったのですが、「 数字が合わないときに『 9 』で割ったりするよね。 」と言ったら誰もやってなかったのでその話をします。たぶん、会計に携わってる人なら知ってる人も多いはず。 例えば、経理の仕事をしてたりすると、仕訳を全部入力したのに帳簿の残高と実際の預金残高が合わないということがあると思います。会計の仕事をしていない人でも、家計簿ソフトを使ってて、レシートを全部入力したのに現金の残高が合わないなんていうことがあるんじゃないでしょうか。そんなときは闇雲に間違いを探しはじめないで、とりあえず差額を「 2 」か「 9 」で割ってみるといいかもしれません。割り切れると↓こんな可能性が考えられます。 「 2 」で割り切れる → ±を逆に入力してる可能性がある「 9 」で割り切れる → 桁間違い or 数字の一部を逆に入力してる可能性がある  

    gan2
    gan2 2009/01/22
    前にボーッと読んだときは分からなかったけど、今読み返してみたら理屈が理解できた。なるほどねー
  • FF(16進数の掛け算)を覚えよう - やねうらおブログ(移転しました)

    最近、あるプログラマと話していて気づいたのだけど、彼は16進数の2桁と1桁との掛け算(FDh×5とか)が出来ない。やり方自体を知らないのだ。彼はWindowsの電卓を立ち上げて計算していた。 そのときは「プログラマでなくともこんなこと知ってて当然だろ!」と思ったのだけど、その後、10人ぐらいのプログラマに出来るかどうか聞いてみたが誰も出来ない。 結局、「普通は出来ない」のだと私は理解した。しかし16進数の掛け算はそんなに難しくない。私が子供のころには、まわりにFF(1×1=1に始まって、F×F=E1まで)を丸暗記している人がいっぱいいた。情報教育の一環として中学か高校で教えても計算の仕方ぐらい教えればいいのになぁと思っている。 前置きが長くなったが、以下にやり方などを書いておく。 ■ 16進数に馴染もう 16進数では、A = 10 , B = 11 , C = 12 , D = 13 ,

    FF(16進数の掛け算)を覚えよう - やねうらおブログ(移転しました)
  • あの福井市の小学生、その驚くべき発見とは (2) - 檜山正幸のキマイラ飼育記 (はてなBlog)

    (前のエントリーの続きです。) 面積 = 内部点の個数 + 周囲の長さに依存する数 の「周囲の長さに依存する数」の予測はつきましたか? … … … これは、「周囲の長さ/2 - 1」となります。結局、面積を求める公式は、 面積 = 内部点の個数 + 周囲の長さ/2 - 1 中藤小学校の先生が出した宿題の場合、周囲の長さが16だったので、「周囲の長さ/2 - 1」の部分が「16/2 - 1 = 8 - 1 = 7」となり、 面積 = 内部点の個数 + 7 だったわけです。 下の図は、僕が方眼紙に描いてみた少し複雑な例です。確かに、「面積 = 内部点の個数 + 周囲の長さ/2 - 1」となっていますよ。 特に、宿題の例(e)のように、内部点をもたない“細い図形”のときは、 面積 = 周囲の長さ/2 - 1 となり、面積は周囲の長さだけで決まる(そして逆に、周囲の長さは面積だけで決まる)ことにな

    あの福井市の小学生、その驚くべき発見とは (2) - 檜山正幸のキマイラ飼育記 (はてなBlog)
    gan2
    gan2 2008/02/12
  • 福井市の小学生が驚くべき発見 - 檜山正幸のキマイラ飼育記 (はてなBlog)

    たまたま目にした論文に面白いことが書いてありました。 随分と昔(1976年)のことらしいのですが、福井県福井市中藤<なかふじ>小学校の先生が、「図形の周囲の長さから面積は求められないし、面積から周囲の長さも求められない」ことを子供達に納得してもらうために、次のような宿題を出したんだそうです。 次の図の「S」と書かれた四角は正方形のタイルです。このタイルの一辺の長さを単位として測ることにして; 図形(a)の周囲の長さは16、面積は16です。たまたま長さも面積も16でしたが、これで法則性があると早とちりしてはいけません。(b)から(e)までの周囲の長さと面積も求めてみなさい。 驚くべきことに、先生の意図に反して、とある子供が“周囲の長さと面積の関係”を発見してしまったというのです。 この子の発見は、その前年(1975年)出版の論文集(University of Tokyo Press)に公表さ

    福井市の小学生が驚くべき発見 - 檜山正幸のキマイラ飼育記 (はてなBlog)
    gan2
    gan2 2008/02/09
  • 宴会ネタ - 揚げ足取り数列 : 404 Blog Not Found

    2007年12月03日18:15 カテゴリMath翻訳/紹介 宴会ネタ - 揚げ足取り数列 もう師走ではないか。宴会の季節ではないか。 というわけで宴会でほろ酔い加減の時に使えそうな数学ネタを。 Q. ...に続く数字を答えなさい。 1, 2, 3, 4... 答えは5ではありません。29です。その次は?126です。 でたらめを言っているのではありません。きちんと単純な規則に則っているのです。 その規則とは? a(n) = (n - 1)(n - 2)(n - 3)(n - 4) + n でした。 (n - 1)(n - 2)(n - 3)(n - 4)があるおかげで、n = 1,2,3,4に関しては、a(n) = n になります。しかしそれ以外に関しては、落とし穴になる、というわけです。(n - 1)(n - 2) ... (n - k)の部分を変えれば、任意の数字を落とし穴に出来るとい

    宴会ネタ - 揚げ足取り数列 : 404 Blog Not Found
    gan2
    gan2 2008/02/08
  • 数学は友達だ! - 書評 - 数学でつまずくのはなぜか : 404 Blog Not Found

    2008年01月20日07:00 カテゴリ書評/画評/品評Math 数学友達だ! - 書評 - 数学でつまずくのはなぜか これがスゴでなくて何をスゴと呼べばいいのか。 数学でつまずくのはなぜか 小島寛之 「『(数学|算数)がわからない』がわからない」人は、必ず手に入れよう。教師、塾の講師、家庭教師はまず必読。家で子どもの宿題を教える機会のある父母兄姉も必読。教わる方としても、教える方の手口を知っておくために入手しておくべき。 書、「数学でつまづくのはなぜか」がどんなから、著者に直接語ってもらおう。 P. 3 このは、こどもたちと数学のあいだがらのことを書いただ。 でも、「どうやってこどもたちに上手に数学を教えられるか」ということを書いたではない。どちらかというと、「どうやったらこどもたちから数学を学ぶことができるか」、それを書いたである。 さらに言うなら、「数学がいかに有

    数学は友達だ! - 書評 - 数学でつまずくのはなぜか : 404 Blog Not Found
    gan2
    gan2 2008/01/20
  • 404 Blog Not Found:書評 - 不完全性定理

    2007年02月05日01:00 カテゴリ書評/画評/品評Math 書評 - 不完全性定理 初掲載2007.02.04 脱帽。 不完全性定理 数学的体系のあゆみ 野崎昭弘 もしかして、今まで読んだ数学書の中で最高傑作かも知れない。 著者の野崎昭弘は、「詭弁論理学」の著者にして、「Gödel, Escher, Bach(GEB)」の訳者。安野光雅と「石頭コンピューター」を共著した人でもある。私は「πの話」以来のファンなのだが、その野崎昭弘が不完全性定理にガチで対峙したのが書だ。 目次 第1章 ギリシャの奇跡 第2章 体系とその進化 第3章 集合論の光と陰 第4章 証明の形式化 第5章 超数学の誕生 第6章 ゲーデル登場 書は、「不完全性定理とは何か」だけではなく、「公理とは何か」「定理とは何か」をまずきちんと解説した上で、「不完全性定理は人にとってどんな意味があるのか」までを説いている。

    404 Blog Not Found:書評 - 不完全性定理
    gan2
    gan2 2007/12/23
    「もしかして、今まで読んだ数学書の中で最高傑作かも知れない。」
  • 1