タグ

関連タグで絞り込む (1)

タグの絞り込みを解除

ChatGPTに関するkabakiyoのブックマーク (2)

  • 【文系でもわかる】ChatGPTのキモ「Transformer」「Attention」のしくみ

    第1回は、さまざまなタスクをこなす万能型ジェネレーティブAIツール「ChatGPT」の性能の鍵を握る「トークン長(GPTが文脈を意識できる過去の単語数)」やGPTの歴史的経緯について解説しました。第2回はGPTを支える自然言語処理 の分野で使用される深層学習モデル「Transformer」とその根幹となる「Attention機構(そのタスクにおいてどの単語の重要度が高く、注目すべきか決める仕組み)」についてです。TransformerとAttention機構の仕組みを定性的に把握し、それを踏まえてGPTの能力と可能性について考察したいと思います。テクノロジー領域に明るくない人でもわかる記事を目指します。

    【文系でもわかる】ChatGPTのキモ「Transformer」「Attention」のしくみ
  • ChatGPTはどのように学習を行なっているのか

    はじめに ChatGPTのインパクトが個人的にすごかったので、どういった学習が行われているのか、どういう課題があるのか等を理解しようと思い、OpenAIの記事をベースに情報をピックアップしてざっとまとめました。 あくまで私なりの解釈で情報を整理してまとめたものになりますので、いくつか専門性の低い分野に対しては曖昧な記述になっていたり、理解を誤って記載しているかもしれません。 もし間違い等がありましたらご指摘いただけると大変ありがたいです。 ChatGPT: Optimizing Language Models for Dialogue 参考 ChatGPTは、OpenAIによって開発された、対話に特化した言語モデルである。 特徴としては、 前の対話内容に続く質問への回答が可能。 間違いを認めることもできる。 正しくない前提に対する異議を唱えることもできる。 不適切なリクエストには応じない。

    ChatGPTはどのように学習を行なっているのか
  • 1