タグ

2015年11月23日のブックマーク (6件)

  • データ分析のプロを目指すエンジニア必読の書 - ほくそ笑む

    福島真太朗『データ分析プロセス』を読みました。 データ分析プロセス (シリーズ Useful R 2) 作者: 福島真太朗,金明哲出版社/メーカー: 共立出版発売日: 2015/06/25メディア: 単行この商品を含むブログ (2件) を見る 「データ分析」とひとことで言っても、色々な人たちが色々な考え方で「データ分析」をやっていると思います。 その一大勢力として挙げられるのが「Excelで集計だけしてる人たち」です。これは特にマーケター出身の人が多いのではないでしょうか。*1 一方、最近のデータ分析界隈に増加していると思われるのが「機械学習ツールにデータを入れるだけ」の人たちです。 特にエンジニア出身の方が、上司に「データ分析が流行ってるみたいだから今日からデータ分析やって」と言われて泣きながらやっているケースが多いのではないかと。 そういう人たちは、機械学習についてある程度理解してお

    データ分析のプロを目指すエンジニア必読の書 - ほくそ笑む
  • マーケティングオートメーションと機械学習をつかった予測スコアリングについて私見 - niwaringo.blog

    最近マーケティングオートメーション界隈では、「機械学習を使った予測スコアリング」なんてモノをよく聞きます。マーケティングオートメーションというバズワードに機械学習というバスワードを重ねてくるあたりに趣を感じます。 近くでかかわっているいる者からすれば、双方とも実態がなくバズっているわけではないのですが、「機械学習(人工知能)使えば、マーケティングは全て自動化される」なんて事を言う困ったちゃんがいたりして、いやはやなんとも言えない気持ちになります。言葉に罪はないんですよ。 ひじょうに敷居がたかく感じる機械学習ですが、さいきんではかなり気軽に試すことができます。 データサイエンティストではない私も、Amazon Machine Learningを使って予測スコアリングを試しています。そこでいろいろと感じることがありましたので、いちユーザーとして、「機械学習を使った予測スコアリング」を利用する立

    マーケティングオートメーションと機械学習をつかった予測スコアリングについて私見 - niwaringo.blog
  • 機械学習で未来を予測する - scikit-learn の決定木で未来の株価を予測 - Qiita

    今回の記事は一応前回の続きなのですが、 scikit-learn による機械学習を利用して、実際に未来を予測する話を書いていきたいと思います。 なにはともあれ、まずは以下の図をみてください。 今回も実験対象のデータとして株価データを利用します。 上の図に挙げたのは弊社 (DTS) の株価であり、物のデータです。 図にあるように「過去の株価の変化から結果どうなったのか」という情報を、機械学習を利用して計算機に学習させ、それをもとに将来の株価を予測してみます。 決定木アルゴリズム 今回は数ある分類の手法の中から決定木 (デジジョン・ツリー) を利用します。手法の選択理由は以前に書いた記事を参考にしてください。 決定木自体の説明は Wikipedia あたりを読んでいただくと早いかと思います。 また scikit-learn に実装されている決定木についての説明は公式ドキュメントにあります。

    機械学習で未来を予測する - scikit-learn の決定木で未来の株価を予測 - Qiita
  • ディープラーニングでおそ松さんの六つ子は見分けられるのか 〜実施編〜 - bohemia日記

    前回、おそ松さんたちをディープラーニングで見分けるため、準備編としておそ松さんたちの顔画像を5644枚集めました。 今回はそれを用いて、ディープラーニングで学習させ、判別器を作って検証します。 集めた画像 人物 枚数 例 おそ松 1126 から松 769 チョロ松 1047 一松 736 十四松 855 とど松 729 その他 383 使用フレームワーク 最近GoogleからTensorFlowという新しいディープラーニングのフレームワークが発表されました。 会社のブログに使い方書いたのですが、まだ慣れていないので、今回はchainerを使います。こちらだとすぐに高い成果を上げているImageNetのNINモデル、4層畳み込みニューラルネットワークがサンプルで入っていますので、こちらを改良して使います。 imageNetの使い方は、こちらやこちらを参考にしています。 訓練データセット Im

    ディープラーニングでおそ松さんの六つ子は見分けられるのか 〜実施編〜 - bohemia日記
  • Deep Learningでラブライブ!キャラを識別する - christinaの備忘録

    このところDeep Learningが相当流行っているようで、ほとんど至るところで話題になっているのを見ます。 Deep Learningは深層学習とも呼ばれ、ニューラルネットワークの層をこれまでより深くして機械学習を行う技法です(だそうです)。 画像認識コンテストで他の方法と比べて非常に高い精度を示しており、以前は人の手で行っていた特徴の抽出まで行えます。 以前であれば車を認識するには車はどのような特徴を持っているかを人がモデル化して入力していたわけですが、この特徴を入力画像と与えられたラベルからニューラルネットワークが捉えてくれます。詳しいことはDeep Learningで検索して出てくる記事やスライドを参照のこと。 Deep Learning自体は容易に実装可能なものではなさそうですが、多くの研究グループがDeep Learningを行うためのソフトウェアをオープンソースにしているた

    Deep Learningでラブライブ!キャラを識別する - christinaの備忘録
  • ご注文はDeep Learningですか? - kivantium活動日記

    先日Deep Learningでラブライブ!キャラを識別するという記事が話題になっていました。この記事で紹介されている SIG2D 2014を知り合いから貸してもらったので参考にしながら、ご注文は機械学習ですか?のDeep Learning版を作ってみました。 Caffeなど必要なソフトのインストール Ubuntu 14.04の場合は過去記事を参照してください。これ以外にもpython-opencvなどを使いますが、依存関係の全ては把握できていないのでエラーが出たら適宜インストールしてください。 データの準備 Deep Learningでは大量の学習データが必要になると言われているので、まずは大量のデータを用意します。参考記事では6000枚のラブライブ画像を使ったということなので対抗して12000枚以上のごちうさ画像を用意したいと思います。それだけのデータを手動で分類するとそれだけで時間が

    ご注文はDeep Learningですか? - kivantium活動日記