IntelがUSB接続タイプのスティック型ディープニューラルネットワーク処理用アクセラレータ「Movidius Neural Compute Stick」を発表しました。画像処理やAI技術をクラウドではなくローカル環境で手軽に開発できることが期待されています。 Movidius | Intel Newsroom https://newsroom.intel.com/press-kits/movidius/ Intel Democratizes Deep Learning Application Development with Launch of Movidius Neural Compute Stick | Intel Newsroom https://newsroom.intel.com/news/intel-democratizes-deep-learning-application
デープラーニングはコモディティ化していてハンダ付けの方が付加価値高いといわれるピ-FNで主に工作担当のtai2anです。 NHKで全国放送されたAmazon Picking Challengeでガムテべったべたのハンドやロボコン感満載の滑り台とかを工作してました。 とはいえ、やっぱりちょっとディープラーニングしてみたいので1,2か月前からchainerを勉強し始めました。 せっかくなので線画の着色をしたいなーと思って色々試してみました。 線画の着色は教師あり学習なので線画と着色済みの画像のデータセットが(できれば大量に)必要です。 今回はOpenCVでカラーの画像から線画を適当に抽出しています。 抽出例 → カラーの画像を集めて線画を作ればデータセットの完成です。(今回は60万枚くらい使っています) ネットワークの形ですが、U-netという最初の方でコンボリューションする時の層の出
ディープラーニングで「インド人を右に」を理解する: Generative Adversarial Network による画像モーフィング 「インド人を右に」問題 インターネットを長く使っている方は、伝説の誤植「インド人を右に」 [1] についてご存知なのではないでしょうか。 「くお〜!! ぶつかる〜!! ここでアクセル全開、インド人を右に!」 この唐突に過ぎる意味不明な「インド人」は「ハンドル」の誤植であり、それはライターの手書きの文字が汚かったために発生したとされています。 …手書きの文字が汚かったとして、どうすれば「ハンドル」が「インド人」になるのか? 従来より、この問題について様々な考察がなされてきました。 ここでは、近年の技術の発展の成果を取り入れ、コンピュータに文字を書かせることによって「ハンドル」から「インド人」への変容についてアプローチしてみたいと思います。 # これは De
なんというか、この結果を見たときは衝撃だった。 時は東京都知事選の結果が世を沸かせ、小池百合子氏が圧勝しメディアで話題になっていた時、ディープラーニングで文章を生成するという人工知能システムのテストのために試行錯誤をしていた、私のコンピュータ端末にこれが現れた。 若者もあり、あるいは才智|逞《たくま》しゅうして役人となり商人となりて天下を動かす者もあり、あるいは智恵分別なくして生涯、飴《あめ》やおこし[#「おこし」に傍点]四文の銭も、己《おの》が職分の何ものたるを知らず、子をばよく生めどもその子を教うるの道を知らず、いわゆる恥も法も知らざる馬鹿者にて、その子孫繁盛すれば一国の益はなさずして、かえって害をなす者なきにあらず。かかる馬鹿者を取り扱うにはとても道理をもってすべからず、不本意ながら力をもって威《おど》し、一時の大害を鎮《しず》むるよりほかに方便あることなし。 これすなわち世に暴政府
はじめに こんにちは。あんどう(@t_andou)です。 前回は人工知能の技術として最近話題のディープラーニング(Deep Learning)で何ができるのかという一例として、モノクロ映画のカラー化をやってみました。 前回の記事はこちら andoo.hatenablog.com 今回もディープラーニングを使った事例の紹介です。 今回紹介するのは画風変換と呼ばれるものです。英語ではStyle Transfer と言うようです。 画風変換とは ある画像(インプット画像)を別の画像(スタイル画像)の画風で描き変えることです。 もしかしたら間違ってるかもしれません。でも、そんな感じです。 技術的に細かいことはこちらをご覧ください GitHub - jcjohnson/neural-style: Torch implementation of neural style algorithm 例えば:(
本研究では、畳込みニューラルネットワークを用いてラフスケッチを線画に自動変換する手法を提案する。既存のスケッチ簡略化手法の多くは単純なラフスケッチのベクター画像のみを対象としており、スキャンした鉛筆画など、ラスター形式の複雑なラフスケッチを線画化するのは困難であった。これに対し提案手法では、3種類の畳込み層から構成されるニューラルネットワークモデルによって複雑なラフと線画の対応を学習することで、ラスター形式の様々なラフスケッチを良好に線画化することができる。提案モデルでは、任意のサイズやアスペクト比をもつ画像を入力として扱うことが可能であり、出力される線画は入力画像と同じサイズになる。また、このような多層構造をもつモデルを学習させるため、ラフスケッチと線画がペアになった新しいデータセットを構築し、モデルを効果的に学習させる方法を提案した。得られた結果についてユーザテストを行い、提案手法の性
4. • Deep Learning • Deep Neural Network(DNN) • Neural Network(NN) • Hidden Markov Model(HMM) • Gaussian Mixture Model - Hidden Markov Model(GMM-HMM) • Deep Neural Network - Hidden Markov Model(DNN-HMM) • 機械学習 • パターン認識 • 時系列データの認識 • 音声認識 • 画像認識 • モーション認識 • 音楽リズム認識 • 経済モデル • 感情モデル... キーワード 7. • Ne#lix Movie Compe..on – Part of the “Ensemble” ($1 Million dollars) • Kaggle Merck Competion 2012 - Help
ディープラーニングが猛威を振るっています。私の周りでは昨年から多く聞かれるようになり、私も日経BPさんの連載で昨年5月にGoogleの買収したDeep Mind社について触れました。今年はさらに今までディープラーニングについて触れていなかったメディアでも触れられるようになってきましたね。例えば、イケダハヤトさんも先日。高知でも話題になっているのですね。 私事ですが、今度湯川鶴章さんのTheWaveという勉強会で、人工知能とビジネスについて一時間ほど登壇させていただくことになりました。有料セミナーということです。チャールズべバッジの解析機関についてはこのブログでも以前触れましたが、「機械が人間を置き換える」みたいな妄想は100年位は言われていることですね。「解析機関」「機械学習」「人工知能」「シンギュラリティー」など、呼び名はどんどん変わり、流行り廃りもありますが、最近ロボットの発達も相まっ
うまくできましたか? ボヤけたり、ギザギザになったりしませんでしたか? waifu2xをお試しください。 (ブラウザの処理に影響されないようクリックで拡大おねがいします) waifu2xは、二次元画像を2倍に拡大するソフトウェアです。多くの二次元画像についてスゴイ級のクオリティで拡大できます。 waifu2xは、最新鋭の人工知能技術 Deep Convolutional Neural Networks を使って開発されました。 waifu2xの人工知能は、次の問に答えます。 いまから与える画像はある画像を半分に縮小したものである。縮小される前の画像を求めよ。 画像を拡大するのではなく、縮小される前の状態に戻します。 縮小されてないオリジナル画像を与えた場合も、やはり縮小される前の画像を答えます。 その画像は本来存在しないものですが、waifu2xはそれを想像で創ります。 二次元画像のJPE
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く