Dream3D: Zero-Shot Text-to-3D Synthesis Using 3D Shape Prior and Text-to-Image Diffusion Models CVPR 2023 Jiale Xu1,3, Xintao Wang1, Weihao Cheng1, Yan-Pei Cao1, Ying Shan1, Xiaohu Qie2, Shenghua Gao3,4,5
DiffRF is a denoising diffusion probabilistic model directly operating on 3D radiance fields and trained with an additional volumetric rendering loss. This enables learning strong radiance priors with high rendering quality and accurate geometry. We introduce DiffRF, a novel approach for 3D radiance field synthesis based on denoising diffusion probabilistic models. While existing diffusion-based m
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く