文体診断λόγων(ロゴーン) 以下に文章を入力していただくと、名文の中から類似の文体を探し出します。 また、文章の表現力や読みやすさを評価します。入力の上限は5000字です。
文体診断λόγων(ロゴーン) 以下に文章を入力していただくと、名文の中から類似の文体を探し出します。 また、文章の表現力や読みやすさを評価します。入力の上限は5000字です。
I LOVE NLPThis is reprint from Sharon Goldwater’s “Reading list on Bayesian modeling for language“. People often ask me what they can read to learn more about recent Bayesian modeling techniques and their applications to language learning. Here is a list of the papers I have found to be most useful and relevant to my own research. I try to emphasize the papers aimed at a slightly less technical/mo
NAACL/HLT 2009に出る予定の論文, "Global Models of Document Structure Using Latent Permutations" [pdf] [code] が面白そうだったので, 読んでみた。 若干仮定が強すぎたりする面はありますが, 興味深い話で, 理解を深めるためにこの場所を使って整理。 これは一言で言うと, 潜在トピックの表れる順序に一般化Mallows Modelを 仮定して文書構造を表現する, という話で, 実は自然言語処理一般に 有益な可能性がある話だと思う。 Mallows Modelが順序の確率分布だということは前から知っていたものの, ランキングの研究をしているわけではないので, 自分にはとりあえず関係ないと思ってこれまでスルーしていた。 Barzilayのグループは以前から文書構造の研究をしていますが, 今回は新しい話で,
人工知能基本問題研究会 (SIG-FPAI)でタイトルの題目で一時間ほど話してきました。 発表資料 [pptx] [pdf] 話した内容は - 自然言語処理における特徴ベクトルの作り方と、性質 - オンライン学習, Perceptron, Passive Agressive (PA), Confidence Weighted Learning (CW) 確率的勾配降下法 (SGD) - L1正則化, FOLOS - 索引を用いた効率化, 全ての部分文字列を利用した文書分類 で、スライドで70枚ぐらい。今までの発表とかぶっていないのはPA CW SGD FOLOSあたりでしょうか オンライン学習、L1正則化の話がメインになっていて、その両方の最終形の 確率的勾配降下法 + FOLOSの組み合わせは任意の損失関数に対してL1/L2正則化をかけながらオンライン学習をとても簡単にできるという一昔前
id:naoya さんのLatent Semantic Indexing の記事に触発されて、ここ1週間ほどちょくちょく見ている行列の近似計算手法について書いてみる。ここでやりたいのは単語-文書行列(どの単語がどの文書に出てきたかの共起行列)や購入者-アイテム行列(どの人がどの本を買ったかとか、推薦エンジンで使う行列)、ページ-リンク行列(どのページからどのページにリンクが出ているか、もしくはリンクをもらっているか。PageRank などページのランキングの計算に使う)、といったような行列を計算するとき、大規模行列だと計算量・記憶スペースともに膨大なので、事前にある程度計算しておけるのであれば、できるだけ小さくしておきたい(そして可能ならば精度も上げたい)、という手法である。 行列の圧縮には元の行列を A (m行n列)とすると A = USV^T というように3つに分解することが多いが、も
2009/02/05: 『機械はどれだけ人間に近づけるのか』 ~第2回 チームラボアルゴリズムコンテスト~ 『機械はどれだけ人間に近づけるのか』 ~第2回 チームラボアルゴリズムコンテスト~ 情報があふれてる。 人間の手で一つ一つ情報を見て取捨選択することは不可能だ。 もし人間の手に代わるロボットがいたら世の中がちょっと変わるかもしれない。 人間が持つ見えないルールや思考をプログラムで実現してみたいと思わないだろうか。 それはきっと使う者を感動させ、未来をわくわくさせるだろう。 我々チームラボも常にそこに挑戦し続けたいと思っている。 そこで純粋なこの思いを満たせる場をコンテストという形で提供し、プログラマーの皆さんを応援したいと思う。 このアルゴリズムコンテストは、機械はどれだけ人間に近づけるのかというお題を通して、皆さんが日ごろ持っているアイデアを、様々な要素技術(例えば、自然言語処理
Social IMEではWeb APIを公開していますが、昨年11月に公開したかな漢字変換APIに続き、予測変換APIを公開しました。 このAPIを使うと、たとえば次のような予測変換ができます。「はてな」で予測変換はてな はてなブックマーク はてなブック はてなダイアリー (以下略) ローマ字入力の途中での予測を行うと、このように展開されます。「わt」で予測変換私 私は 私の 私も 私が(以下略) また、長文を入力したときのかな漢字変換候補との統合にも対応しています。「きょうのてんきはは」で予測変換今日の天気は晴れ予測変換にはWebから抽出された大規模な統計量(Google提供)が用いられています。APIを活用したクライアントを開発されている方は、ぜひご利用ください。
はてなグループの終了日を2020年1月31日(金)に決定しました 以下のエントリの通り、今年末を目処にはてなグループを終了予定である旨をお知らせしておりました。 2019年末を目処に、はてなグループの提供を終了する予定です - はてなグループ日記 このたび、正式に終了日を決定いたしましたので、以下の通りご確認ください。 終了日: 2020年1月31日(金) エクスポート希望申請期限:2020年1月31日(金) 終了日以降は、はてなグループの閲覧および投稿は行えません。日記のエクスポートが必要な方は以下の記事にしたがって手続きをしてください。 はてなグループに投稿された日記データのエクスポートについて - はてなグループ日記 ご利用のみなさまにはご迷惑をおかけいたしますが、どうぞよろしくお願いいたします。 2020-06-25 追記 はてなグループ日記のエクスポートデータは2020年2月28
Google翻訳が面白すぎる件 市販ソフトである「コリャ英和!…」を中心に翻訳性能を分析しようと思ってたのですが、Google翻訳が面白すぎるので少し脱線です。前のエントリ(http://d.hatena.ne.jp/Ozy/20080915#p2)をご覧頂いただけでると思いますが、進めていけばいくほどかわいそうになってきたので、もうちょっと文章が複雑になったところで評価対象から外そうと思います(;´д`) Mary has a guitar. コリャ英和 2009 メアリーはギターを持っています。 Google メアリーには、ギターです。 Yahoo メアリーは、ギターを持っています。 Excite メアリはギターを持っています。 ですよねー。 We played baseball. コリャ英和 2009 我々は野球をしました。 Google 私たちの野球です。 Yahoo 我々は、野球
Expired:掲載期限切れです この記事は,ダウ・ジョーンズ・ジャパンとの契約の掲載期限(90日間)を過ぎましたので本サーバから削除しました。 このページは20秒後にNews トップページに自動的に切り替わります。
ヤフーの日本語係り受け解析APIとサンプルプログラム「なんちゃって文章要約」 2008-08-21-1 [WebTool][NLP][Programming][Algorithm] Yahoo!デベロッパーネットワーク(YDN)に 「日本語係り受け解析Webサービス」が登場しました。 Yahoo!デベロッパーネットワーク - テキスト解析 - 日本語係り受け解析 http://developer.yahoo.co.jp/jlp/DAService/V1/parse.html 「係り受けってなに?」という方もいると思うので、 以下、まったくもって厳密ではない、適当な解説を試みます。 (1) 日本語をコンピューターで処理するには、 まず形態素解析というのをやって、 文を形態素(≒単語)単位に分割します。 YDN の「日本語形態素解析Webサービス」[2007-06-18-1] で試すことができ
ヤフーは5月27日、「Yahoo!デベロッパーネットワーク」で「かな漢字変換Webサービス」を公開した。 Yahoo!デベロッパーネットワークは、インターネット関連の開発者向けにYahoo! JAPANの技術仕様を公開し、一部のサービスやデータベースへ無料(1日当たり5万リクエストまで)でアクセスできるサービスだ。これを使うことによって、外部の開発者はYahoo! JAPANのデータベースを活用したサービスやソフトウェアを開発することができ、ウェブ検索をはじめ、現在10分野のWebサービスを公開している。 今回公開されたかな漢字変換Webサービスは、日本語入力プログラム「VJE」(VACS Japanese Entry)をAPI化した。VJEは、もともとバックスが開発したプログラムで、MS-DOS全盛の時代には強い支持を受けたプログラムだ。バックス社は2006年6月に休眠しているが、それ以
様々なオンライン学習手法をサポートしたライブラリ「OLL (Online-Learning Library)」をリリースしました。 プロジェクトページ 日本語詳細ページ 学習、推定を行なう単体プログラムと、C++ライブラリからなります。(C++ライブラリ解説はまだ)。 New BSDライセンス上で自由に使えます。使った場合は感想や苦情などいただけると幸いです。 オンライン学習とは、一つずつ訓練データを見てパラメータを更新していく手法で、訓練データをまとめて見てから学習するバッチ学習(SVMs, 最大エントロピー法)と比べて非常に効率良く学習を行なうことができます。それでいながらSVMs, やMEsに匹敵する精度が出ます。 学習するデータの性質にもよりますが、例えば、英語の文書分類タスクで、15000訓練例、130万種類の素性の訓練データに対する学習が1秒未満で終わります(SVMsだと実装に
第80回知識ベースシステム研究会を開催したが,二日間で58名の方々に参加して頂き,積極的に議論に加わって頂いた.この場を借りて,参加してくれた方々に感謝したい.大変遅くなった(爆)が,Googleの工藤拓氏による招待講演「大規模テキスト処理を支える形態素解析技術」の概要を,このブログで報告しておきたい.工藤氏の専門分野は統計的自然言語処理と機械学習であるが,日本語形態素解析エンジンMeCabの開発者であり,他にも自然言語処理関連の有益なツールや,Webベースの日本語入力を可能にするAjax IMEのようなユニークなサービスを提供しているなど,時代をリードする研究開発者の一人である.彼の活動に興味があれば,彼のブログ「きまぐれ日記」は必見だろう. なお,当日は弊社側の不手際で,予定していた工藤氏の重要なデモをおこなうことができなかった.弊社はネットワーク会社であるにもかかわらず,ネットワーク
TinySegmenterはJavascriptだけ書かれた極めてコンパクトな日本語分かち書きソフトウェアです。 わずか25kバイトのソースコードで、日本語の新聞記事であれば文字単位で95%程度の精度で分かち書きが行えます。 Yahoo!の形態素解析のように サーバーサイドで解析するのではなく、全てクライアントサイドで解析を行うため、セキュリティの 観点から見ても安全です。分かち書きの単位はMeCab + ipadicと互換性があります。 デモ 日本語の文章を入力し、解析ボタンをクリックしてください。 ダウンロード TinySegmenterはフリーソフトウェアです. 修正BSDライセンスに従って本ソフトウェアを使用,再配布することができます. Download TinySegmenter version 0.2 使い方 <script type="text/javascript" src
Xoilac TV là gì? Xoilac TV là website xem trực tiếp bóng đá 90Phut bình luận tiếng Việt hình ảnh sắc nét. TTBD Xôi Lạc TV Ngoại Hạng Anh, Champion League, Europa League, La Liga, Bundesliga, Series A, Ligue 1, V-League... XoilacTV nơi người hâm mộ thỏa mãn đam mê cháy bỏng với trái bóng tròn. XoilacTV có các bình luận viên tiếng Việt nổi tiếng: RAM, FANTA, SINGER, CÁ, SÙNG A MÚP, CRIS, TAM MAO, RI
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く