チャートの表示: 表示する 表示しない カタカナを考慮: カタカナを無視する カタカナを考慮する 貢献度の表示: 表示しない 文字単位 文字クラス単位 ことば不思議箱 - 佐藤研究室 - (c) Satoshi Sato and his laboratory at Nagoya University, 2007-2008.
あまり細かいことは気にせずテキスト分類器のRubyライブラリを1コマンドで自動生成する便利ツールを作りました。 いろいろ迷走している間に。 gem install nekoneko_genでインストールできます。 なにをするものなのか、ちょっと分かりにくいので、例で説明します。 2ちゃんねるの投稿からどのスレッドの投稿か判定するライブラリを生成する 例として、2ちゃんねるに投稿されたデータから、投稿(レス)がどのスレッドのレスか判定するライブラリを生成してみます。 準備 まず gem install nekoneko_genでインストールします。 Ruby 1.8.7でも1.9.2でも動きますが1.9.2のほうが5倍くらい速いので1.9.2以降がおすすめです。 環境は、ここではUbuntuを想定しますが、Windowsでも使えます。(WindowsXP, ruby 1.9.3p0で確認)
FrontPage / 言語処理100本ノック 3 秒後に NLP 100 Drill Exercises に移動します。 (移動しない場合は、上のリンクをクリックしてください。) © Inui Laboratory 2010-2018 All rights reserved. 研究室紹介/About Us 過去に在籍したメンバー Members 研究室環境 Lab Facilities ↑研究会/Research Meetings 概要 Overview 総合研究会 Research Seminar 意味研究会 SIG Semantics 談話研究会 SIG Discourse 知識獲得研究会 SIG Knowledge Acquisition Embedding研究会 SIG Embedding KIAI Knowledge-Intensive Artificial Intellige
件名: 主人がオオアリクイに殺されて1年が過ぎました。 差出人: 久光 いきなりのメール失礼します。 久光さやか、29歳の未亡人です。 お互いのニーズに合致しそうだと思い、連絡してみました。 自分のことを少し語ります。 昨年の夏、わけあって主人を亡くしました。 自分は…主人のことを…死ぬまで何も理解していなかったのが とても悔やまれます。 主人はシンガポールに頻繁に旅行に向っていたのですが、 それは遊びの為の旅行ではなかったのです。 収入を得るために、私に内緒であんな危険な出稼ぎをしていたなんて。 一年が経過して、ようやく主人の死から立ち直ってきました。 ですが、お恥ずかしい話ですが、毎日の孤独な夜に、 身体の火照りが止まらなくなる時間も増えてきました。 主人の残した財産は莫大な額です。 つまり、謝礼は幾らでも出きますので、 私の性欲を満たして欲しいのです。 お返事を頂けましたら、もっと詳
English 京都テキスト解析ツールキット(KyTea、「キューティー」)は、日本語など、単語(または形態素)分割を必要とする言語のための一般的なテキスト解析器です。 特徴 ダウンロード・インストール プログラム仕様 解析:手法の詳細, 入出力の形式, API 学習:モデル学習, 入手可能なモデル KyTeaを使った分野適応 開発情報 特徴 KyTeaには以下の機能が揃っています: 単語分割:分かち書きされていないテキストを適当な単語または形態素に分割する。 読み推定・品詞推定:かな漢字変換や音声認識、音声生成のために単語の発音を推定することができ、品詞を推定することもできます。 線形SVMやロジスティック回帰などを用いてそれぞれの分割点や読みを個別に推定するため、部分的にアノテーションされたデータを利用してモデルを学習することも可能です。 分類器の学習にはLIBLINEARを使用してい
自然言語処理を活用したwebサービス開発に関わって5年以上経った。いい機会なのでこれまでを振り返って役に立ったと思う5冊をメモしておく。 1.珠玉のプログラミング―本質を見抜いたアルゴリズムとデータ構造 まずはこれ。有名な本なので知っている人も多いと思う。簡単に説明するとちょっと前に「フェルミ推定」という名前で流行ったような、データから必要な数値を概算する方法や、問題が起きたときに問題点がどこにあるのか?最小の労力で解決するにはどこをいじればよいのか?などが書いてある。「webサービスで自然言語処理だ!」というと無限に夢が広がりがちなので、どういうデータが使えるのか、それをどういう形にもっていけばイケてるサービスになるのか、それはどのくらいの期間で実現できるか、ということを考える必要がある。そういうわけで本書は真っ先に読むべき一冊なのでは(余談だけれど、以前M << Nなデータに対してO(
Quoraで「自然言語処理に適したプログラミング言語はどれか?」という質問をしたところ,やっぱりPythonが一番人気のようです.What programming language is suitable for natural language processing? - Quora理由として以下が挙げられていますNLTKがあるから正規表現ライブラリ(re)が強力だからnumpyとscipyがあるから スクレイピングにBeautifulSoupやScrape.pyが使えるから Django / Pylons / TornadoのようなWebフレームワークがあるから また,機械学習のライブラリを言語別にまとめた質問もありました.こちらもJava, Python, Rが多いですね.Which programming language has the best repository of ma
勢い余ってスイカを買ったら、毎日食べるハメになってしまいました。海野です。 どんな業界もそうだと思いますが、世の中の流行りものの論文が増えるという面が自然言語処理界隈にもあります。Web、blog、と来て、最近のトレンドはやはりtwitterに代表されるmicro blogでしょうか。今年の言語処理学会の年次大会でtwitterセッションは大盛況でしたが、国際会議でもtwitterを題材として発表が増えています。 数えてみたら、重要国際会議であるACLで6件、EMNLPでも3件、twitterをタイトルに含む発表が今年ありました。ちなみに2010年の会議では1件もありませんでした。そんなわけで、私も今日はそんな流行りに乗っかって、twitter言語処理関連の論文を3つ紹介します。 Cooooooooooooooollllllllllllll!!!!!!!!!!!!!! UsingWord
はじめに この文書は、 Steven Bird, Ewan Klein, Edward Loper 著 萩原 正人、中山 敬広、水野 貴明 訳 『入門 自然言語処理』 O'Reilly Japan, 2010. の第12章「Python による日本語自然言語処理」を、原書 Natural Language Processing with Python と同じ Creative Commons Attribution Noncommercial No Derivative Works 3.0 US License の下で公開するものです。 原書では主に英語を対象とした自然言語処理を取り扱っています。内容や考え方の多くは言語に依存しないものではありますが、単語の分かち書きをしない点や統語構造等の違いから、日本語を対象とする場合、いくつか気をつけなければいけない点があります。日本語を扱う場合にも
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く