概要 FXの自動取引システムを構築して欲しいと知り合いに頼まれたので、色々と試してみました。 Oandaが様々な言語でoanda REST APIのWrapperを提供しているので、デモ申込を行いサンプルコードを書いてみました。 後々機械学習で運用することも考えて、Python版のWrapperであるoandapyを使用してみることにしました。 環境の準備 pyenvとpyenv-virtualenvをインストール 手元のmacにはpyenvとpyenv-virtualenvは導入されている状態だったのですが、一応インストール方法は以下のような感じだったはずです。 $ git clone git://github.com/yyuu/pyenv.git ~/.pyenv $ git clone https://github.com/yyuu/pyenv-virtualenv.git ~/.p
前回の記事 pythonと遺伝的アルゴリズムで作るFX自動売買システム その1 今回作るモノ 前回のその1では基本的なAIと全体の仕組みを書いたので今回は複雑な売買AIを定義して、実際に遺伝的アルゴリズムで進化させていきます。 複雑な売買AIを定義 ■ 仕様 現在レート、4時間平均レート、24時間平均レート、過去25営業日の最高値と最安値、過去25営業日の最高値と最安値から何日経過したかで、現在の相場をパターン分けし過去10年の売買データから適切(適切な値は遺伝的アルゴリズムで計算して過去のデータから求める)な注文を行う。 ■ 動作例 通貨:ドル円 現在時刻: 2015年10月1日 10:00:00 現在レート: 120.00円 4時間平均レート: 119.80円 24時間平均レート: 119.40円 過去25営業日の最高値: 121.75円 過去25営業日の最安値: 117.25円 過去
base_domain = MODE.get('production') url_base = 'https://{}/v1/candles?'.format(base_domain) url = url_base + 'instrument={}&'.format(currency_pair.name) + \ 'count=5000&' +\ 'candleFormat=midpoint&' +\ 'granularity={}&'.format(granularity.name) +\ 'dailyAlignment=0&' +\ 'alignmentTimezone=Asia%2FTokyo&' +\ 'start={}T00%3A00%3A00Z'.format(start) response = requests_api(url) def requests_api(url, p
Python やそのパッケージをインストールする方法はいくつかありますが、ここでは Anaconda を使ってインストールする方法を紹介します。 私の周りでは Anaconda で環境構築をすることと Python コミュニティ標準の方法をとることの是非についての議論をよく見かけます。自分の目的にあったものを選択すれば良いと思いますが、初心者にとってどちらが目的に叶うものかを判断するのは難しいことかもしれません。 以下にディストリビューターとして Anaconda (Continuum Analytics 社) が提供している価値について私見をまとめました。 Anaconda は Environment Isolation Tool (環境分離ツール) ではない 一方で Python コミュニティ公式のバイナリーディストリビューションを提供するツールである wheel も充実してきました。
第三次人工知能ブームが到来し、機械学習やディープラーニング(深層学習)が注目を集めている。ニュースでも、様々な分野で業務の効率化に成功した話が頻繁に取り上げられている。そして、その屋台骨として使われているのが、プログラミング言語がPythonであることをご存じだろうか。 もうずいぶん前からPythonは世界で人気のプログラミング言語だったが、最近まで日本ではそれほど盛り上がっているとは言えなかった。しかし、この人工知能ブームのおかげもあって、日本でもPython人気に火が点いた。 もともと、Pythonには、データ解析や自然言語処理、画像処理など、機械学習を行う上で欠かせない便利なライブラリが豊富に揃っていたため、ディープラーニングを行うための基礎があったと言える。 そこで、本連載では、人気のプログラミング言語「Python」を実践で活用する方法を紹介していく。その第一回目となる今回は、P
本ページでは、Jupyter Notebook の概要と基本的な使い方について紹介します。 Jupyter Notebook とは Jupyter Notebook (読み方は「ジュパイター・ノートブック」または「ジュピター・ノートブック」) とは、ノートブックと呼ばれる形式で作成したプログラムを実行し、実行結果を記録しながら、データの分析作業を進めるためのツールです。 プログラムとその実行結果やその際のメモを簡単に作成、確認することができるため、自分自身の過去の作業内容の振り返りや、チームメンバーへ作業結果を共有する際に便利なほか、スクール形式での授業や研修などでの利用にも向いています。 このようなノートブック形式で分析作業を行うためのツールとしては、微分積分などの科学技術系計算ソフトウェアの Mathematica (マセマティカ) や Spark, Hadoop などの並列分散処理シ
はてなグループの終了日を2020年1月31日(金)に決定しました 以下のエントリの通り、今年末を目処にはてなグループを終了予定である旨をお知らせしておりました。 2019年末を目処に、はてなグループの提供を終了する予定です - はてなグループ日記 このたび、正式に終了日を決定いたしましたので、以下の通りご確認ください。 終了日: 2020年1月31日(金) エクスポート希望申請期限:2020年1月31日(金) 終了日以降は、はてなグループの閲覧および投稿は行えません。日記のエクスポートが必要な方は以下の記事にしたがって手続きをしてください。 はてなグループに投稿された日記データのエクスポートについて - はてなグループ日記 ご利用のみなさまにはご迷惑をおかけいたしますが、どうぞよろしくお願いいたします。 2020-06-25 追記 はてなグループ日記のエクスポートデータは2020年2月28
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く