OFFSET
0,3
COMMENTS
This sequence is related to A000538 by a(n) = n*A000538(n) - Sum_{i=0..n-1} A000538(i). - Bruno Berselli, Apr 26 2010
See comment in A008292 for a formula for r-th successive summation of Sum_{k=1..n} k^j. - Gary Detlefs, Jan 02 2014
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1991, p. 275.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Bruno Berselli, A description of the transform in Comments lines: website Matem@ticamente (in Italian).
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Eric Weisstein's World of Mathematics, Faulhaber's Formula
Wikipedia, Faulhaber's formula
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
a(n) = n^2*(n+1)^2*(2*n^2+2*n-1)/12.
a(n) = sqrt(Sum_{j=1..n}Sum_{i=1..n}(i*j)^5). - Alexander Adamchuk, Oct 26 2004
a(n) = Sum_{i = 1..n} J_5(i)*floor(n/i), where J_5 is A059378. - Enrique Pérez Herrero, Feb 26 2012
a(n) = 6*a(n-1) - 15* a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) + 120. - Ant King, Sep 23 2013
a(n) = 120*C(n+3,6) + 30*C(n+2,4) + C(n+1,2) (Knuth). - Gary Detlefs, Jan 02 2014
a(n) = -Sum_{j=1..5} j*Stirling1(n+1,n+1-j)*Stirling2(n+5-j,n). - Mircea Merca, Jan 25 2014
Sum_{n>=1} 1/a(n) = 60 - 4*Pi^2 + 8*sqrt(3)*Pi * tan(sqrt(3)*Pi/2). - Vaclav Kotesovec, Feb 13 2015
a(n) = (n + 1)^2*n^2*(n + 1/2 + sqrt(3/4))*(n + 1/2 - sqrt(3/4))/6. See the Graham et al. reference, p. 275. - Wolfdieter Lang, Apr 02 2015
G.f.: x*(1+26*x+66*x^2+26*x^3+x^4)/(1-x)^7. - Robert Israel, Dec 07 2015
a(n) = (binomial(n+1,4) + 6*binomial(n+2,4) + binomial(n+3,4))*(binomial(n+2,3) - binomial(n+1,3)). - Tony Foster III, Oct 21 2018
E.g.f.: exp(x)*x*(12 + 186*x + 360*x^2 + 195*x^3 + 36*x^4 + 2*x^5)/12. - Stefano Spezia, May 04 2024
MAPLE
A000539:=-(1+26*z+66*z**2+26*z**3+z**4)/(z-1)**7; # Simon Plouffe in his 1992 dissertation
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+n^5 od: seq(a[n], n=0..30); # Zerinvary Lajos, Feb 22 2008
a:=n->sum(j^5, j=0..n): seq(a(n), n=0..30); # Zerinvary Lajos, Jun 05 2008
MATHEMATICA
Accumulate[Range[0, 40]^5]
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 1, 33, 276, 1300, 4425, 12201}, 41] (* Jean-François Alcover, Feb 09 2016 *)
PROG
(PARI) a(n)=n^2*(n+1)^2*(2*n^2+2*n-1)/12 \\ Charles R Greathouse IV, Jul 15 2011
(Maxima) A000539(n):=n^2*(n+1)^2*(2*n^2+2*n-1)/12$ makelist(A000539(n), n, 0, 30); /* Martin Ettl, Nov 12 2012 */
(Magma) [n^2*(n+1)^2*(2*n^2+2*n-1)/12: n in [0..30]]; // Vincenzo Librandi, Apr 04 2015
(Python)
A000539_list, m = [0], [120, -240, 150, -30, 1, 0, 0]
for _ in range(10**2):
for i in range(6):
m[i+1] += m[i]
A000539_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
(Python)
def A000539(n): return n**2*(n**2*(n*(n+3<<1)+5)-1)//12 # Chai Wah Wu, Oct 03 2024
(PARI) concat(0, Vec(x*(1+26*x+66*x^2+26*x^3+x^4)/(1-x)^7 + O(x^100))) \\ Altug Alkan, Dec 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved