OFFSET
0,3
COMMENTS
a(n) is divisible by A000537(n) if and only n is congruent to 1 mod 3 (see A016777) - Artur Jasinski, Oct 10 2007
This sequence is related to A000540 by a(n) = n*A000540(n) - Sum_{i=0..n-1} A000540(i). - Bruno Berselli, Apr 26 2010
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 815.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
B. Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
a(n) = n^2*(n+1)^2*(3*n^4 + 6*n^3 - n^2 - 4*n + 2)/24.
a(n) = sqrt(Sum_{j=1..n} Sum_{i=1..n} (i*j)^7). - Alexander Adamchuk, Oct 26 2004
G.f.: x*(1 + 120*x + 1191*x^2 + 2416*x^3 + 1191*x^4 + 120*x^5 + x^6)/(1-x)^9. - Colin Barker, May 25 2012
a(n) = 8*a(n-1) - 28* a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) + 5040. - Ant King, Sep 24 2013
a(n) = -Sum_{j=1..7} j*Stirling1(n+1,n+1-j)*Stirling2(n+7-j,n). - Mircea Merca, Jan 25 2014
MAPLE
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+n^7 od: seq(a[n], n=0..25); # Zerinvary Lajos, Feb 22 2008
MATHEMATICA
Table[Sum[k^7, {k, 1, n}], {n, 0, 100}] (* Artur Jasinski, Oct 10 2007 *)
s = 0; lst = {s}; Do[s += n^7; AppendTo[lst, s], {n, 1, 30, 1}]; lst (* Zerinvary Lajos, Jul 12 2009 *)
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {0, 1, 129, 2316, 18700, 96825, 376761, 1200304, 3297456}, 35] (* Vincenzo Librandi, Feb 20 2016 *)
PROG
(PARI) a(n)=n^2*(n+1)^2*(3*n^4+6*n^3-n^2-4*n+2)/24 \\ Edward Jiang, Sep 10 2014
(PARI) a(n) = sum(i=1, n, i^7); \\ Michel Marcus, Sep 11 2014
(Python)
A000541_list, m = [0], [5040, -15120, 16800, -8400, 1806, -126, 1, 0, 0]
for _ in range(10**2):
for i in range(8):
m[i+1] += m[i]
A000541_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
(Magma) [n^2*(n+1)^2*(3*n^4+6*n^3-n^2-4*n+2)/24: n in [0..30]]; // Vincenzo Librandi, Feb 20 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved