login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000542
Sum of 8th powers: 1^8 + 2^8 + ... + n^8.
(Formerly M5427 N2358)
17
0, 1, 257, 6818, 72354, 462979, 2142595, 7907396, 24684612, 67731333, 167731333, 382090214, 812071910, 1627802631, 3103591687, 5666482312, 9961449608, 16937207049, 27957167625, 44940730666, 70540730666, 108363590027, 163239463563, 241550448844
OFFSET
0,3
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 815.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Bruno Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(n) = n*(n+1)*(2*n+1)*(5*n^6 + 15*n^5 + 5*n^4 - 15*n^3 - n^2 + 9*n - 3)/90.
a(n) = n*A000541(n) - Sum_{i=0..n-1} A000541(i). - Bruno Berselli, Apr 26 2010
G.f.: x*(x+1)*(x^6 + 246*x^5 + 4047*x^4 + 11572*x^3 + 4047*x^2 + 246*x + 1)/(x-1)^10. - Colin Barker, May 27 2012
a(n) = 9*a(n-1) - 36* a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) + 40320. - Ant King, Sep 24 2013
a(n) = -Sum_{j=1..8} j*Stirling1(n+1,n+1-j)*Stirling2(n+8-j,n). - Mircea Merca, Jan 25 2014
MAPLE
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+n^8 od: seq(a[n], n=0..23); # Zerinvary Lajos, Feb 22 2008
MATHEMATICA
lst={}; s=0; Do[s=s+n^8; AppendTo[lst, s], {n, 10^2}]; lst..or..Table[Sum[k^8, {k, 1, n}], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2008 *)
s = 0; lst = {s}; Do[s += n^8; AppendTo[lst, s], {n, 1, 30, 1}]; lst (* Zerinvary Lajos, Jul 12 2009 *)
Accumulate[Range[0, 30]^8] (* Harvey P. Dale, Jun 17 2015 *)
PROG
(Sage) [bernoulli_polynomial(n, 9)/9 for n in range(1, 25)] # Zerinvary Lajos, May 17 2009
(Python)
A000542_list, m = [0], [40320, -141120, 191520, -126000, 40824, -5796, 254, -1, 0, 0]
for _ in range(24):
for i in range(9):
m[i+1] += m[i]
A000542_list.append(m[-1])
print(A000542_list) # Chai Wah Wu, Nov 05 2014
(PARI) a(n)=n*(n+1)*(2*n+1)*(5*n^6+15*n^5+5*n^4-15*n^3-n^2+9*n-3)/90 \\ Charles R Greathouse IV, Sep 28 2015
CROSSREFS
Row 8 of array A103438.
Sequence in context: A013956 A294303 A036086 * A023877 A301552 A279641
KEYWORD
nonn,easy
STATUS
approved