login
Search: a015518 -id:a015518
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = A015518(A032742(n)) / A015518(A054576(n)).
+20
2
1, 1, 1, 2, 1, 7, 1, 10, 7, 61, 1, 26, 1, 547, 61, 82, 1, 703, 1, 242, 547, 44287, 1, 730, 61, 398581, 703, 2186, 1, 58807, 1, 6562, 44287, 32285041, 547, 19682, 1, 290565367, 398581, 59050, 1, 4780783, 1, 177146, 58807, 23535794707, 1, 531442, 547, 3472494301, 32285041, 1594322, 1, 387400807, 44287, 4782970, 290565367, 17157594341221, 1, 14348906, 1
OFFSET
1,4
COMMENTS
A015518 is a divisibility sequence, which guarantees that the result of the division is an integer.
a(n) is a function of A032742(n).
LINKS
FORMULA
a(n) = A015518(A032742(n)) / A015518(A054576(n)).
PROG
(Scheme) (define (A280691 n) (/ (A015518 (A032742 n)) (A015518 (A054576 n))))
CROSSREFS
Cf. also A280689.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 11 2017
STATUS
approved
a(n) = 6 * A015518(n).
+20
1
0, 6, 12, 42, 120, 366, 1092, 3282, 9840, 29526, 88572, 265722, 797160, 2391486, 7174452, 21523362, 64570080, 193710246, 581130732, 1743392202, 5230176600, 15690529806, 47071589412, 141214768242, 423644304720, 1270932914166
OFFSET
0,2
FORMULA
a(n) = 2*a(n-1)+3*a(n-2).
G.f.: 6*x/(1-2*x-3*x^2). - Colin Barker, Jan 29 2012
MATHEMATICA
LinearRecurrence[{2, 3}, {0, 6}, 30] (* Harvey P. Dale, Jun 09 2017 *)
CROSSREFS
Cf. A015518.
KEYWORD
nonn,easy,less
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Dec 04 2006
STATUS
approved
a(n) = A000108(n)*A015518(n+1), where A000108 are the Catalan numbers and A015518(n) = 2*A015518(n-1) + 3*A015518(n-2).
+20
1
1, 2, 14, 100, 854, 7644, 72204, 703560, 7037030, 71772844, 743844452, 7810307960, 82909630972, 888316731800, 9593823377880, 104332819539600, 1141523825614470, 12556761952114380, 138785264158902900, 1540516430396559000, 17165754516697206420, 191944345934966132040
OFFSET
0,2
COMMENTS
More generally, given {S} such that: S(n) = b*S(n-1) + c*S(n-2), |b|>0, |c|>0, S(0)=1, then
Sum_{n>=0} S(n)*Catalan(n)*x^n = sqrt( (1-2*b*x - sqrt(1-4*b*x-16*c*x^2))/(2*b^2+8*c) )/x.
FORMULA
G.f.: sqrt( (1-4*x - sqrt(1-8*x-48*x^2))/32 )/x.
G.f.: sqrt( M(4*x) ), where M(x) is g.f. of A001006. - Werner Schulte, Aug 10 2015
Conjecture: n*(n+1)*a(n) -4*n*(2*n-1)*a(n-1) -12*(2*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Oct 08 2016
G.f: B(m(4z)/4), where B(x) is the g.f. of A000984 and m(x) is the g.f. of A086246. - Alexander Burstein, May 20 2021
EXAMPLE
G.f.: A(x) = 1 + 1*2*x + 2*7*x^2 + 5*20*x^3 + 14*61*x^4 + 42*182*x^5 + 132*547*x^6 +...+ A000108(n)*A015518(n+1)*x^n +...
MATHEMATICA
CoefficientList[Series[Sqrt[(1 - 4*x - Sqrt[1 - 8*x - 48*x^2])/32]/x, {x, 0, 50}], x] (* G. C. Greubel, Jun 09 2017 *)
PROG
(PARI) {A000108(n)=binomial(2*n, n)/(n+1)}
{A015518(n)=polcoeff(x/(1-2*x-3*x^2 +x*O(x^n)), n)}
{a(n)=A000108(n)*A015518(n+1)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 26 2012
STATUS
approved
Pell numbers: a(0) = 0, a(1) = 1; for n > 1, a(n) = 2*a(n-1) + a(n-2).
(Formerly M1413 N0552)
+10
762
0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782, 195025, 470832, 1136689, 2744210, 6625109, 15994428, 38613965, 93222358, 225058681, 543339720, 1311738121, 3166815962, 7645370045, 18457556052, 44560482149, 107578520350, 259717522849
OFFSET
0,3
COMMENTS
Sometimes also called lambda numbers.
Also denominators of continued fraction convergents to sqrt(2): 1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 1393/985, 3363/2378, 8119/5741, 19601/13860, 47321/33461, 114243/80782, ... = A001333/A000129.
Number of lattice paths from (0,0) to the line x=n-1 consisting of U=(1,1), D=(1,-1) and H=(2,0) steps (i.e., left factors of Grand Schroeder paths); for example, a(3)=5, counting the paths H, UD, UU, DU and DD. - Emeric Deutsch, Oct 27 2002
a(2*n) with b(2*n) := A001333(2*n), n >= 1, give all (positive integer) solutions to Pell equation b^2 - 2*a^2 = +1 (see Emerson reference). a(2*n+1) with b(2*n+1) := A001333(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation b^2 - 2*a^2 = -1.
Bisection: a(2*n+1) = T(2*n+1, sqrt(2))/sqrt(2) = A001653(n), n >= 0 and a(2*n) = 2*S(n-1,6) = 2*A001109(n), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. S(-1,x)=0. See A053120, resp. A049310. - Wolfdieter Lang, Jan 10 2003
Consider the mapping f(a/b) = (a + 2b)/(a + b). Taking a = b = 1 to start with and carrying out this mapping repeatedly on each new (reduced) rational number gives the following sequence 1/1, 3/2, 7/5, 17/12, 41/29, ... converging to 2^(1/2). Sequence contains the denominators. - Amarnath Murthy, Mar 22 2003
This is also the Horadam sequence (0,1,1,2). Limit_{n->oo} a(n)/a(n-1) = sqrt(2) + 1 = A014176. - Ross La Haye, Aug 18 2003
Number of 132-avoiding two-stack sortable permutations.
From Herbert Kociemba, Jun 02 2004: (Start)
For n > 0, the number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 4 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 2, s(n) = 3.
Number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 4 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 1, s(n) = 2. (End)
Counts walks of length n from a vertex of a triangle to another vertex to which a loop has been added. - Mario Catalani (mario.catalani(AT)unito.it), Jul 23 2004
Apart from initial terms, Pisot sequence P(2,5). See A008776 for definition of Pisot sequences. - David W. Wilson
Sums of antidiagonals of A038207 [Pascal's triangle squared]. - Ross La Haye, Oct 28 2004
The Pell primality test is "If N is an odd prime, then P(N)-Kronecker(2,N) is divisible by N". "Most" composite numbers fail this test, so it makes a useful pseudoprimality test. The odd composite numbers which are Pell pseudoprimes (i.e., that pass the above test) are in A099011. - Jack Brennen, Nov 13 2004
a(n) = sum of n-th row of triangle in A008288 = A094706(n) + A000079(n). - Reinhard Zumkeller, Dec 03 2004
Pell trapezoids (cf. A084158); for n > 0, A001109(n) = (a(n-1) + a(n+1))*a(n)/2; e.g., 1189 = (12+70)*29/2. - Charlie Marion, Apr 01 2006
(0!a(1), 1!a(2), 2!a(3), 3!a(4), ...) and (1,-2,-2,0,0,0,...) form a reciprocal pair under the list partition transform and associated operations described in A133314. - Tom Copeland, Oct 29 2007
Let C = (sqrt(2)+1) = 2.414213562..., then for n > 1, C^n = a(n)*(1/C) + a(n+1). Example: C^3 = 14.0710678... = 5*(0.414213562...) + 12. Let X = the 2 X 2 matrix [0, 1; 1, 2]; then X^n * [1, 0] = [a(n-1), a(n); a(n), a(n+1)]. a(n) = numerator of n-th convergent to (sqrt(2)-1) = 0.414213562... = [2, 2, 2, ...], the convergents being [1/2, 2/5, 5/12, ...]. - Gary W. Adamson, Dec 21 2007
A = sqrt(2) = 2/2 + 2/5 + 2/(5*29) + 2/(29*169) + 2/(169*985) + ...; B = ((5/2) - sqrt(2)) = 2/2 + 2/(2*12) + 2/(12*70) + 2/(70*408) + 2/(408*2378) + ...; A+B = 5/2. C = 1/2 = 2/(1*5) + 2/(2*12) + 2/(5*29) + 2/(12*70) + 2/(29*169) + ... - Gary W. Adamson, Mar 16 2008
From Clark Kimberling, Aug 27 2008: (Start)
Related convergents (numerator/denominator):
lower principal convergents: A002315/A001653
upper principal convergents: A001541/A001542
intermediate convergents: A052542/A001333
lower intermediate convergents: A005319/A001541
upper intermediate convergents: A075870/A002315
principal and intermediate convergents: A143607/A002965
lower principal and intermediate convergents: A143608/A079496
upper principal and intermediate convergents: A143609/A084068. (End)
Equals row sums of triangle A143808 starting with offset 1. - Gary W. Adamson, Sep 01 2008
Binomial transform of the sequence:= 0,1,0,2,0,4,0,8,0,16,..., powers of 2 alternating with zeros. - Philippe Deléham, Oct 28 2008
a(n) is also the sum of the n-th row of the triangle formed by starting with the top two rows of Pascal's triangle and then each next row has a 1 at both ends and the interior values are the sum of the three numbers in the triangle above that position. - Patrick Costello (pat.costello(AT)eku.edu), Dec 07 2008
Starting with offset 1 = eigensequence of triangle A135387 (an infinite lower triangular matrix with (2,2,2,...) in the main diagonal and (1,1,1,...) in the subdiagonal). - Gary W. Adamson, Dec 29 2008
Starting with offset 1 = row sums of triangle A153345. - Gary W. Adamson, Dec 24 2008
From Charlie Marion, Jan 07 2009: (Start)
In general, denominators, a(k,n) and numerators, b(k,n), of continued fraction convergents to sqrt((k+1)/k) may be found as follows:
let a(k,0) = 1, a(k,1) = 2k; for n > 0, a(k,2n) = 2*a(k,2n-1) + a(k,2n-2)
and a(k,2n+1) = (2k)*a(k,2n) + a(k,2n-1);
let b(k,0) = 1, b(k,1) = 2k+1; for n > 0, b(k,2n) = 2*b(k,2n-1) + b(k,2n-2)
and b(k,2n+1) = (2k)*b(k,2n) + b(k,2n-1).
For example, the convergents to sqrt(2/1) start 1/1, 3/2, 7/5, 17/12, 41/29.
In general, if a(k,n) and b(k,n) are the denominators and numerators, respectively, of continued fraction convergents to sqrt((k+1)/k) as defined above, then
k*a(k,2n)^2 - a(k,2n-1)*a(k,2n+1) = k = k*a(k,2n-2)*a(k,2n) - a(k,2n-1)^2 and
b(k,2n-1)*b(k,2n+1) - k*b(k,2n)^2 = k+1 = b(k,2n-1)^2 - k*b(k,2n-2)*b(k,2n);
for example, if k=1 and n=3, then a(1,n) = a(n+1) and
1*a(1,6)^2 - a(1,5)*a(1,7) = 1*169^2 - 70*408 = 1;
1*a(1,4)*a(1,6) - a(1,5)^2 = 1*29*169 - 70^2 = 1;
b(1,5)*b(1,7) - 1*b(1,6)^2 = 99*577 - 1*239^2 = 2;
b(1,5)^2 - 1*b(1,4)*b(1,6) = 99^2 - 1*41*239 = 2.
(End)
Starting with offset 1 = row sums of triangle A155002, equivalent to the statement that the Fibonacci sequence convolved with the Pell sequence prefaced with a "1": (1, 1, 2, 5, 12, 29, ...) = (1, 2, 5, 12, 29, ...). - Gary W. Adamson, Jan 18 2009
It appears that P(p) == 8^((p-1)/2) (mod p), p = prime; analogous to [Schroeder, p. 90]: Fp == 5^((p-1)/2) (mod p). Example: Given P(11) = 5741, == 8^5 (mod 11). Given P(17) = 11336689, == 8^8 (mod 17) since 17 divides (8^8 - P(17)). - Gary W. Adamson, Feb 21 2009
Equals eigensequence of triangle A154325. - Gary W. Adamson, Feb 12 2009
Another combinatorial interpretation of a(n-1) arises from a simple tiling scenario. Namely, a(n-1) gives the number of ways of tiling a 1 X n rectangle with indistinguishable 1 X 2 rectangles and 1 X 1 squares that come in two varieties, say, A and B. For example, with C representing the 1 X 2 rectangle, we obtain a(4)=12 from AAA, AAB, ABA, BAA, ABB, BAB, BBA, BBB, AC, BC, CA and CB. - Martin Griffiths, Apr 25 2009
a(n+1) = 2*a(n) + a(n-1), a(1)=1, a(2)=2 was used by Theon from Smyrna. - Sture Sjöstedt, May 29 2009
The n-th Pell number counts the perfect matchings of the edge-labeled graph C_2 x P_(n-1), or equivalently, the number of domino tilings of a 2 X (n-1) cylindrical grid. - Sarah-Marie Belcastro, Jul 04 2009
As a fraction: 1/79 = 0.0126582278481... or 1/9799 = 0.000102051229...(1/119 and 1/10199 for sequence in reverse). - Mark Dols, May 18 2010
Limit_{n->oo} (a(n)/a(n-1) - a(n-1)/a(n)) tends to 2.0. Example: a(7)/a(6) - a(6)/a(7) = 169/70 - 70/169 = 2.0000845... - Gary W. Adamson, Jul 16 2010
Numbers k such that 2*k^2 +- 1 is a square. - Vincenzo Librandi, Jul 18 2010
Starting (1, 2, 5, ...) = INVERTi transform of A006190: (1, 3, 10, 33, 109, ...). - Gary W. Adamson, Aug 06 2010
[u,v] = [a(n), a(n-1)] generates all Pythagorean triples [u^2-v^2, 2uv, u^2+v^2] whose legs differ by 1. - James R. Buddenhagen, Aug 14 2010
An elephant sequence, see A175654. For the corner squares six A[5] vectors, with decimal values between 21 and 336, lead to this sequence (without the leading 0). For the central square these vectors lead to the companion sequence A078057. - Johannes W. Meijer, Aug 15 2010
Let the 2 X 2 square matrix A=[2, 1; 1, 0] then a(n) = the (1,1) element of A^(n-1). - Carmine Suriano, Jan 14 2011
Define a t-circle to be a first-quadrant circle tangent to the x- and y-axes. Such a circle has coordinates equal to its radius. Let C(0) be the t-circle with radius 1. Then for n > 0, define C(n) to be the next larger t-circle which is tangent to C(n - 1). C(n) has radius A001333(2n) + a(2n)*sqrt(2) and each of the coordinates of its point of intersection with C(n + 1) is a(2n + 1) + (A001333(2n + 1)*sqrt(2))/2. See similar Comments for A001109 and A001653, Sep 14 2005. - Charlie Marion, Jan 18 2012
A001333 and A000129 give the diagonal numbers described by Theon from Smyrna. - Sture Sjöstedt, Oct 20 2012
Pell numbers could also be called "silver Fibonacci numbers", since, for n >= 1, F(n+1) = ceiling(phi*F(n)), if n is even and F(n+1) = floor(phi*F(n)), if n is odd, where phi is the golden ratio, while a(n+1) = ceiling(delta*a(n)), if n is even and a(n+1) = floor(delta*a(n)), if n is odd, where delta = delta_S = 1+sqrt(2) is the silver ratio. - Vladimir Shevelev, Feb 22 2013
a(n) is the number of compositions (ordered partitions) of n-1 into two sorts of 1's and one sort of 2's. Example: the a(3)=5 compositions of 3-1=2 are 1+1, 1+1', 1'+1, 1'+1', and 2. - Bob Selcoe, Jun 21 2013
Between every two consecutive squares of a 1 X n array there is a flap that can be folded over one of the two squares. Two flaps can be lowered over the same square in 2 ways, depending on which one is on top. The n-th Pell number counts the ways n-1 flaps can be lowered. For example, a sideway representation for the case n = 3 squares and 2 flaps is \\., .//, \./, ./_., ._\., where . is an empty square. - Jean M. Morales, Sep 18 2013
Define a(-n) to be a(n) for n odd and -a(n) for n even. Then a(n) = A005319(k)*(a(n-2k+1) - a(n-2k)) + a(n-4k) = A075870(k)*(a(n-2k+2) - a(n-2k+1)) - a(n-4k+2). - Charlie Marion, Nov 26 2013
An alternative formulation of the combinatorial tiling interpretation listed above: Except for n=0, a(n-1) is the number of ways of partial tiling a 1 X n board with 1 X 1 squares and 1 X 2 dominoes. - Matthew Lehman, Dec 25 2013
Define a(-n) to be a(n) for n odd and -a(n) for n even. Then a(n) = A077444(k)*a(n-2k+1) + a(n-4k+2). This formula generalizes the formula used to define this sequence. - Charlie Marion, Jan 30 2014
a(n-1) is the top left entry of the n-th power of any of the 3 X 3 matrices [0, 1, 1; 1, 1, 1; 0, 1, 1], [0, 1, 1; 0, 1, 1; 1, 1, 1], [0, 1, 0; 1, 1, 1; 1, 1, 1] or [0, 0, 1; 1, 1, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
a(n+1) counts closed walks on K2 containing two loops on the other vertex. Equivalently the (1,1) entry of A^(n+1) where the adjacency matrix of digraph is A=(0,1;1,2). - David Neil McGrath, Oct 28 2014
For n >= 1, a(n) equals the number of ternary words of length n-1 avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
This is a divisibility sequence (i.e., if n|m then a(n)|a(m)). - Tom Edgar, Jan 28 2015
A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all positive integers n and m. - Michael Somos, Jan 03 2017
a(n) is the number of compositions (ordered partitions) of n-1 into two kinds of parts, n and n', when the order of the 1 does not matter, or equivalently, when the order of the 1' does not matter. Example: When the order of the 1 does not matter, the a(3)=5 compositions of 3-1=2 are 1+1, 1+1'=1+1, 1'+1', 2 and 2'. (Contrast with entry from Bob Selcoe dated Jun 21 2013.) - Gregory L. Simay, Sep 07 2017
Number of weak orderings R on {1,...,n} that are weakly single-peaked w.r.t. the total ordering 1 < ... < n and for which {1,...,n} has exactly one minimal element for the weak ordering R. - J. Devillet, Sep 28 2017
Also the number of matchings in the (n-1)-centipede graph. - Eric W. Weisstein, Sep 30 2017
Let A(r,n) be the total number of ordered arrangements of an n+r tiling of r red squares and white tiles of total length n, where the individual tile lengths can range from 1 to n. A(r,0) corresponds to a tiling of r red squares only, and so A(r,0)=1. Let A_1(r,n) = Sum_{j=0..n} A(r,j) and let A_s(r,n) = Sum_{j=0..n} A_(s-1)(r,j). Then A_0(1,n) + A_2(3,n-4) + A_4(5,n-8) + ... + A_(2j) (2j+1, n-4j) = a(n) without the initial 0. - Gregory L. Simay, May 25 2018
(1, 2, 5, 12, 29, ...) is the fourth INVERT transform of (1, -2, 5, -12, 29, ...), as shown in A073133. - Gary W. Adamson, Jul 17 2019
Number of 2-compositions of n restricted to odd parts (and allowed zeros); see Hopkins & Ouvry reference. - Brian Hopkins, Aug 17 2020
Also called the 2-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence. - Michael A. Allen, Jan 23 2023
Named by Lucas (1878) after the English mathematician John Pell (1611-1685). - Amiram Eldar, Oct 02 2023
a(n) is the number of compositions of n when there are F(i) parts of size i, with i,n >= 1, F(n) the Fibonacci numbers, A000045(n) (see example below). - Enrique Navarrete, Dec 15 2023
REFERENCES
J. Austin and L. Schneider, Generalized Fibonacci sequences in Pythagorean triple preserving sequences, Fib. Q., 58:1 (2020), 340-350.
P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 76.
A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 941.
J. M. Borwein, D. H. Bailey, and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 53.
John Derbyshire, Prime Obsession, Joseph Henry Press, 2004, see p. 16.
S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.1.
Shaun Giberson and Thomas J. Osler, Extending Theon's Ladder to Any Square Root, Problem 3858, Elementa, No. 4 1996.
R. P. Grimaldi, Ternary strings with no consecutive 0's and no consecutive 1's, Congressus Numerantium, 205 (2011), 129-149.
Thomas Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 43.
J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 224.
Manfred R. Schroeder, "Number Theory in Science and Communication", 5th ed., Springer-Verlag, 2009, p. 90.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 34.
D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 62.
LINKS
Simone Sandri, Table of n, a(n) for n = 0..1000 (first 500 terms from N. J. A. Sloane)
M. Abrate, S. Barbero, U. Cerruti, and N. Murru, Construction and composition of rooted trees via descent functions, Algebra, Volume 2013 (2013), Article ID 543913, 11 pages.
Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
Paraskevas K. Alvanos and Konstantinos A. Draziotis, Integer Solutions of the Equation y^2 = Ax^4 + B, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.4.
Ayoub B. Ayoub, Fibonacci-like sequences and Pell equations, The College Mathematics Journal, Vol. 38 (2007), pp. 49-53.
Ovidiu Bagdasar, Eve Hedderwick, and Ioan-Lucian Popa, On the ratios and geometric boundaries of complex Horadam sequences, Electronic Notes in Discrete Mathematics (2018) Vol. 67, 63-70.
Aseem R. Baranwal and Jeffrey Shallit, Critical exponent of infinite balanced words via the Pell number system, arXiv:1902.00503 [cs.FL], 2019.
Elena Barcucci, Antonio Bernini, and Renzo Pinzani, A Gray code for a regular language, Semantic Sensor Networks Workshop 2018, CEUR Workshop Proceedings (2018) Vol. 2113.
Jean-Luc Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian, Motzkin paths with a restricted first return decomposition, Integers (2019) Vol. 19, A46.
M. Barnabei, F. Bonetti, and M. Silimbani, Two permutation classes related to the Bubble Sort operator, Electronic Journal of Combinatorics 19(3) (2012), #P25.
Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
Sarah-Marie Belcastro, Domino Tilings of 2 X n Grids (or Perfect Matchings of Grid Graphs) on Surfaces, J. Integer Seq. 26 (2023), Article 23.5.6.
J. Bodeen, S. Butler, T. Kim, X. Sun, and S. Wang, Tiling a strip with triangles, El. J. Combinat. 21 (1) (2014) P1.7.
Latham Boyle and Paul J. Steinhardt, Self-Similar One-Dimensional Quasilattices, arXiv preprint arXiv:1608.08220 [math-ph], 2016.
B. Bradie, Extensions and Refinements of some properties of sums involving Pell Numbers, Miss. J. Math. Sci 22 (1) (2010) 37-43.
Jhon J. Bravo, Jose L. Herrera, and José L. Ramírez, Combinatorial Interpretation of Generalized Pell Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.2.1.
Dorota Bród, On a New One Parameter Generalization of Pell Numbers, Annales Mathematicae Silesianae 33 (2019), 66-76.
Steve Butler, Jason Ekstrand, and Steven Osborne, Counting Tilings by Taking Walks in a Graph, A Project-Based Guide to Undergraduate Research in Mathematics, Birkhäuser, Cham (2020), see page 165.
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Geoffrey B. Campbell and Aleksander Zujev, Gaussian integer solutions for the fifth power taxicab number problem, arXiv:1511.07424 [math.NT], 2015.
Frédéric Chapoton, A note on gamma triangles and local gamma vectors, arXiv:1809.00575 [math.CO], 2018.
C. O. Chow, S. M. Ma, T. Mansour, and M. Shattuck, Counting permutations by cyclic peaks and valleys, Annales Mathematicae et Informaticae, (2014), Vol. 43, pp. 43-54.
Hongshen Chua, A Study of Second-Order Linear Recurrence Sequences via Continuants, J. Int. Seq. (2023) Vol. 26, Art. 23.8.8.
M. Couceiro, J. Devillet, and J.-L. Marichal, Quasitrivial semigroups: characterizations and enumerations, arXiv:1709.09162 [math.RA], 2017.
Phan Thuan Do, Thi Thu Huong Tran, and Vincent Vajnovszki, Exhaustive generation for permutations avoiding a (colored) regular sets of patterns, arXiv:1809.00742 [cs.DM], 2018.
C. M. da Fonseca, Unifying some Pell and Fibonacci identities, Applied Mathematics and Computation, Volume 236, Jun 01 2014, Pages 41-42.
Mahadi Ddamulira, On the x-coordinates of Pell equations which are products of two Pell numbers, arXiv:1906.06330 [math.NT], 2019.
E. Deutsch, A formula for the Pell numbers, Problem 10663, Amer. Math. Monthly 107 (No. 4, 2000), solutions pp. 370-371.
Antonio J. Di Scala, Nadir Murru, and Carlo Sanna, Lucas pseudoprimes and the Pell conic, arXiv:2001.00353 [math.NT], 2020.
E. S. Egge and T. Mansour, 132-avoiding two-stack sortable permutations, Fibonacci numbers, and Pell numbers, arXiv:math/0205206 [math.CO], 2002.
Shalosh B. Ekhad and Tewodros Amdeberhan, Solution to problem #10663 (AMM).
E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242, Ex. 1, pp. 237-238.
Sergio Falcón, Relationships between Some k-Fibonacci Sequences, Applied Mathematics, 2014, 5, 2226-2234.
Sergio Falcón, Generating Function of Some k-Fibonacci and k-Lucas Sequences, International Journal of Innovation in Science and Mathematics (2019) Vol. 7, Issue 2, 2347-9051.
Sergio Falcón, Binomial Transform of the Generalized k-Fibonacci Numbers, Communications in Mathematics and Applications (2019) Vol. 10, No. 3, 643-651.
Bakir Farhi, Summation of Certain Infinite Lucas-Related Series, J. Int. Seq., Vol. 22 (2019), Article 19.1.6.
M. C. Firengiz and A. Dil, Generalized Euler-Seidel method for second order recurrence relations, Notes on Number Theory and Discrete Mathematics, Vol. 20, 2014, No. 4, 21-32.
Felix Flicker, Time quasilattices in dissipative dynamical systems, arXiv:1707.09371 [nlin.CD], 2017. Also SciPost Phys. 5, 001 (2018).
Robert Frontczak and Taras Goy, Mersenne-Horadam identities using generating functions, Carpathian Math. Publ. (2020) Vol. 12, No. 1, 34-45.
Shaun Giberson and Thomas J. Osler, Extending Theon's Ladder to Any Square Root, College Mathematics Journal, May, 2004.
Juan B. Gil and Aaron Worley, Generalized metallic means, arXiv:1901.02619 [math.NT], 2019.
Taras Goy, Pell numbers identities from Toeplitz-Hessenberg determinants, Novi Sad J. Math., 49 (2) (2019), 87-94.
Martin Griffiths, Pell identities via a quadratic field, International Journal of Mathematical Education in Science and Technology, 2013.
R. P. Grimaldi, Tilings, Compositions, and Generalizations, J. Int. Seq. 13 (2010), 10.6.5.
M. A. Gruber, Artemas Martin, A. H. Bell, J. H. Drummond, A. H. Holmes and H. C. Wilkes, Problem 47, Amer. Math. Monthly, 4 (1897), 25-28.
Tian-Xiao He, Peter J.-S. Shiue, Zihan Nie, and Minghao Chen, Recursive sequences and Girard-Waring identities with applications in sequence transformation, Electronic Research Archive (2020) Vol. 28, No. 2, 1049-1062.
Gábor Hetyei, The type B permutohedron and the poset of intervals as a Tchebyshev transform, University of North Carolina-Charlotte (2019).
Andreas M. Hinz and Paul K. Stockmeyer, Precious Metal Sequences and Sierpinski-Type Graphs, J. Integer Seq., Vol 25 (2022), Article 22.4.8.
Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
A. F. Horadam, Special Properties of the Sequence W(n){a,b; p,q}, Fib. Quart., Vol. 5, No. 5 (1967), pp. 424-434.
A. F. Horadam, Pell Identities, Fib. Quart., Vol. 9, No. 3, 1971, pp. 245-252, 263.
Haruo Hosoya, What Can Mathematical Chemistry Contribute to the Development of Mathematics?, HYLE--International Journal for Philosophy of Chemistry, Vol. 19, No.1 (2013), pp. 87-105.
Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
Tanya Khovanova, Recursive Sequences.
Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126.
Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, Volume 15 #A16.
K. Kuhapatanakul, On the Sums of Reciprocal Generalized Fibonacci Numbers, J. Int. Seq. 16 (2013) #13.7.1.
Pablo Lam-Estrada, Myriam Rosalía Maldonado-Ramírez, José Luis López-Bonilla, and Fausto Jarquín-Zárate, The sequences of Fibonacci and Lucas for each real quadratic fields Q(Sqrt(d)), arXiv:1904.13002 [math.NT], 2019.
Shirley Law, Hopf Algebra of Sashes, in FPSAC 2014, Chicago, USA; Discrete Mathematics and Theoretical Computer Science (DMTCS) Proceedings, 2014, 621-632.
H. Li and T. MacHenry, Permanents and Determinants, Weighted Isobaric Polynomials, and Integer Sequences, J. Int. Seq. 16 (2013) #13.3.5, example 46.
Édouard Lucas, The Theory of Simply Periodic Numerical Functions, Fibonacci Association, 1969. English translation of article Théorie des Fonctions Numériques Simplement Périodiques, I, Amer. J. Math., 1 (1878), 184-240.
T. Mansour and M. Shattuck, A statistic on n-color compositions and related sequences, Proc. Indian Acad. Sci. (Math. Sci.) Vol. 124, No. 2, May 2014, pp. 127-140.
A. Moghaddamfar and H. Tajbakhsh, More Determinant Representations for Sequences, Journal of Integer Sequences, 17 (2014), #14.5.6.
Sophie Morier-Genoud and Valentin Ovsienko, q-deformed rationals and q-continued fractions, arXiv:1812.00170 [math.CO], 2018-2020.
Sophie Morier-Genoud and Valentin Ovsienko, q-deformed rationals and q-continued fractions, (2019) [math].
Emanuele Munarini, A generalization of André-Jeannin's symmetric identity, Pure Mathematics and Applications (2018) Vol. 27, No. 1, 98-118.
Mariana Nagy, Simon R. Cowell, and Valeriu Beiu, Survey of Cubic Fibonacci Identities - When Cuboids Carry Weight, arXiv:1902.05944 [math.HO], 2019.
Ahmet Öteleş, Bipartite Graphs Associated with Pell, Mersenne and Perrin Numbers, An. Şt. Univ. Ovidius Constantą, (2019) Vol. 27, Issue 2, 109-120.
Ahmet Öteleş, Zekeriya Y. Karata, and Diyar O. Mustafa Zangana, Jacobsthal Numbers and Associated Hessenberg Matrices, J. Int. Seq., 21 (2018), #18.2.5.
Arzu Özkoç, Some algebraic identities on quadra Fibona-Pell integer sequence, Advances in Difference Equations, 2015, 2015:148.
Hao Pan, Arithmetic properties of q-Fibonacci numbers and q-Pell numbers, Discr. Math., 306 (2006), 2118-2127.
D. Panario, M. Sahin, and Q. Wang, A family of Fibonacci-like conditional sequences, INTEGERS, Vol. 13, 2013, #A78.
Simon Plouffe, Approximations de Séries Génératrices et Quelques Conjectures, Dissertation, Université du Québec à Montréal, 1992.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Raul Prisacariu, Generating k-Pell Infinite Series Using Whittaker's Formula, The Mathematics Enthusiast: Vol. 15 : No. 3, Article 7, 2018.
C. Raissi and J. Pei, Towards Bounding Sequential Patterns, KDD'11, Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, 2011.
Franck Ramaharo, An approximate Jerusalem square whose side equals a Pell number, arXiv:1801.00466 [math.CO], 2018.
José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012-2014.
John Riordan and N. J. A. Sloane, Correspondence, 1974.
Michelle Rudolph-Lilith, On the Product Representation of Number Sequences, with Application to the Fibonacci Family, arXiv preprint arXiv:1508.07894 [math.NT], 2015.
J. L. Schiffman, Exploring the Fibonacci sequence of order two with CAS technology, Electronic Proceedings of the Twenty-fourth Annual International Conference on Technology in Collegiate Mathematics, Orlando, Florida, March 22-25, 2012, Paper C027.
Jon E. Schoenfield, Prime factorization of a(n) for n = 1..630. (a(422) corrected by Amiram Eldar)
James A. Sellers, Domino Tilings and Products of Fibonacci and Pell Numbers, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.2.
Mark Shattuck, Tiling proofs of some formulas for the Pell numbers of odd index, Integers, 9 (2009), 53-64.
Mark Shattuck, Combinatorial Proofs of Some Formulas for Triangular Tilings, Journal of Integer Sequences, 17 (2014), #14.5.5.
Joseph M. Shunia, Polynomial Quotient Rings and Kronecker Substitution for Deriving Combinatorial Identities, arXiv preprint arXiv:2404.00332 [math.GM], 2024.
Nanci Smith, Problem B-82 An Integer Valued Function, Fib. Quart., 4 (1966), 374-375.
Yüksel Soykan, On Generalized Third-Order Pell Numbers, Asian Journal of Advanced Research and Reports (2019) Vol. 6, No. 1, Article No. AJARR.51635, 1-18.
Yüksel Soykan, On Summing Formulas For Generalized Fibonacci and Gaussian Generalized Fibonacci Numbers, Advances in Research (2019) Vol. 20, No. 2, 1-15, Article No. AIR.51824.
Yüksel Soykan, On generalized sixth-order Pell sequences, Journal of Scientific Perspectives (2020) Vol. 4, No. 1, 49-70.
Yüksel Soykan, Generalized Fibonacci Numbers: Sum Formulas, Journal of Advances in Mathematics and Computer Science (2020) Vol. 35, No. 1, 89-104.
Yüksel Soykan, Closed Formulas for the Sums of Squares of Generalized Fibonacci Numbers, Asian Journal of Advanced Research and Reports (2020) Vol. 9, No. 1, 23-39, Article no. AJARR.55441.
Yüksel Soykan, Closed Formulas for the Sums of Cubes of Generalized Fibonacci Numbers: Closed Formulas of Sum_{k=0..n} W_k^3 and Sum_{k=1..n} W_(-k)^3, Archives of Current Research International (2020) Vol. 20, Issue 2, 58-69.
Yüksel Soykan, Mehmet Gümüş, and Melih Göcen, A Study On Dual Hyperbolic Generalized Pell Numbers, Malaya Journal of Matematik, vol. 9, no. 03, July 2021, pp. 99-116.
Robin James Spivey, Close encounters of the golden and silver ratios, Notes on Number Theory and Discrete Mathematics (2019) Vol. 25, No. 3, 170-184.
Ping Sun, Enumeration of standard Young tableaux of shifted strips with constant width, arXiv:1506.07256 [math.CO], 24 Jun 2015.
Tamas Szakacs, Convolution of second order linear recursive sequences I, Ann. Math. Inform. 46 (2016), 205-216.
Wipawee Tangjai, A Non-standard Ternary Representation of Integers, Thai J. Math (2020) Special Issue: Annual Meeting in Mathematics 2019, 269-283.
Gy. Tasi and F. Mizukami, Quantum algebraic-combinatoric study of the conformational properties of n-alkanes, J. Math. Chemistry, 25, 1999, 55-64 (see p. 63).
A. Tekcan, M. Tayat, and M. E. Ozbek, The diophantine equation 8x^2-y^2+8x(1+t)+(2t+1)^2=0 and t-balancing numbers, ISRN Combinatorics, Volume 2014, Article ID 897834, 5 pages.
P. E. Trier, "Almost Isosceles" Right-Angled Triangles, Eureka, No. 4, May 1940, pp. 9 - 11.
Eric Weisstein's World of Mathematics, Centipede Graph.
Eric Weisstein's World of Mathematics, Independent Edge Set.
Eric Weisstein's World of Mathematics, Matching.
Eric Weisstein's World of Mathematics, Pell Number.
Eric Weisstein's World of Mathematics, Pell Polynomial.
Eric Weisstein's World of Mathematics, Pythagoras's Constant.
Eric Weisstein's World of Mathematics, Square Root.
Eric Weisstein's World of Mathematics, Square Triangular Number.
Meral Yasar and Durmus Bozkurt, Another proof of Pell identities by using the determinant of tridiagonal matrix, Appl. Math. Comput., 218 (2012), pp. 6067-6071.
Leon Zaporski and Felix Flicker, Superconvergence of Topological Entropy in the Symbolic Dynamics of Substitution Sequences, arXiv:1811.00331 [nlin.CD], 2018.
Abdelmoumène Zekiri, Farid Bencherif, and Rachid Boumahdi, Generalization of an Identity of Apostol, J. Int. Seq., Vol. 21 (2018), Article 18.5.1.
Jianqiang Zhao, Finite Multiple zeta Values and Finite Euler Sums, arXiv preprint arXiv:1507.04917 [math.NT], 2015.
FORMULA
G.f.: x/(1 - 2*x - x^2). - Simon Plouffe in his 1992 dissertation.
a(2n+1)=A001653(n). a(2n)=A001542(n). - _Ira Gessel_, Sep 27 2002
G.f.: Sum_{n >= 0} x^(n+1) *( Product_{k = 1..n} (2*k + x)/(1 + 2*k*x) ) = Sum_{n >= 0} x^(n+1) *( Product_{k = 1..n} (x + 1 + k)/(1 + k*x) ) = Sum_{n >= 0} x^(n+1) *( Product_{k = 1..n} (x + 3 - k)/(1 - k*x) ) may all be proved using telescoping series. - Peter Bala, Jan 04 2015
a(n) = 2*a(n-1) + a(n-2), a(0)=0, a(1)=1.
a(n) = ((1 + sqrt(2))^n - (1 - sqrt(2))^n)/(2*sqrt(2)).
For initial values a(0) and a(1), a(n) = ((a(0)*sqrt(2)+a(1)-a(0))*(1+sqrt(2))^n + (a(0)*sqrt(2)-a(1)+a(0))*(1-sqrt(2))^n)/(2*sqrt(2)). - Shahreer Al Hossain, Aug 18 2019
a(n) = integer nearest a(n-1)/(sqrt(2) - 1), where a(0) = 1. - Clark Kimberling
a(n) = Sum_{i, j, k >= 0: i+j+2k = n} (i+j+k)!/(i!*j!*k!).
a(n)^2 + a(n+1)^2 = a(2n+1) (1999 Putnam examination).
a(2n) = 2*a(n)*A001333(n). - John McNamara, Oct 30 2002
a(n) = ((-i)^(n-1))*S(n-1, 2*i), with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. See A049310. S(-1, x)=0, S(-2, x)= -1.
Binomial transform of expansion of sinh(sqrt(2)x)/sqrt(2). E.g.f.: exp(x)sinh(sqrt(2)x)/sqrt(2). - Paul Barry, May 09 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k+1)*2^k. - Paul Barry, May 13 2003
a(n-2) + a(n) = (1 + sqrt(2))^(n-1) + (1 - sqrt(2))^(n-1) = A002203(n-1). (A002203(n))^2 - 8(a(n))^2 = 4(-1)^n. - Gary W. Adamson, Jun 15 2003
Unreduced g.f.: x(1+x)/(1 - x - 3x^2 - x^3); a(n) = a(n-1) + 3*a(n-2) + a(n-2). - Mario Catalani (mario.catalani(AT)unito.it), Jul 23 2004
a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*2^(n-2k). - Mario Catalani (mario.catalani(AT)unito.it), Jul 23 2004
Apart from initial terms, inverse binomial transform of A052955. - Paul Barry, May 23 2004
a(n)^2 + a(n+2k+1)^2 = A001653(k)*A001653(n+k); e.g., 5^2 + 70^2 = 5*985. - Charlie Marion Aug 03 2005
a(n+1) = Sum_{k=0..n} binomial((n+k)/2, (n-k)/2)*(1+(-1)^(n-k))*2^k/2. - Paul Barry, Aug 28 2005
a(n) = a(n-1) + A001333(n-1) = A001333(n) - a(n-1) = A001109(n)/A001333(n) = sqrt(A001110(n)/A001333(n)^2) = ceiling(sqrt(A001108(n)/2)). - Henry Bottomley, Apr 18 2000
a(n) = F(n, 2), the n-th Fibonacci polynomial evaluated at x=2. - T. D. Noe, Jan 19 2006
Define c(2n) = -A001108(n), c(2n+1) = -A001108(n+1) and d(2n) = d(2n+1) = A001652(n); then ((-1)^n)*(c(n) + d(n)) = a(n). [Proof given by Max Alekseyev.] - Creighton Dement, Jul 21 2005
a(r+s) = a(r)*a(s+1) + a(r-1)*a(s). - Lekraj Beedassy, Sep 03 2006
a(n) = (b(n+1) + b(n-1))/n where {b(n)} is the sequence A006645. - Sergio Falcon, Nov 22 2006
From Miklos Kristof, Mar 19 2007: (Start)
Let F(n) = a(n) = Pell numbers, L(n) = A002203 = companion Pell numbers (A002203):
For a >= b and odd b, F(a+b) + F(a-b) = L(a)*F(b).
For a >= b and even b, F(a+b) + F(a-b) = F(a)*L(b).
For a >= b and odd b, F(a+b) - F(a-b) = F(a)*L(b).
For a >= b and even b, F(a+b) - F(a-b) = L(a)*F(b).
F(n+m) + (-1)^m*F(n-m) = F(n)*L(m).
F(n+m) - (-1)^m*F(n-m) = L(n)*F(m).
F(n+m+k) + (-1)^k*F(n+m-k) + (-1)^m*(F(n-m+k) + (-1)^k*F(n-m-k)) = F(n)*L(m)*L(k).
F(n+m+k) - (-1)^k*F(n+m-k) + (-1)^m*(F(n-m+k) - (-1)^k*F(n-m-k)) = L(n)*L(m)*F(k).
F(n+m+k) + (-1)^k*F(n+m-k) - (-1)^m*(F(n-m+k) + (-1)^k*F(n-m-k)) = L(n)*F(m)*L(k).
F(n+m+k) - (-1)^k*F(n+m-k) - (-1)^m*(F(n-m+k) - (-1)^k*F(n-m-k)) = 8*F(n)*F(m)*F(k). (End)
a(n+1)*a(n) = 2*Sum_{k=0..n} a(k)^2 (a similar relation holds for A001333). - Creighton Dement, Aug 28 2007
a(n+1) = Sum_{k=0..n} binomial(n+1,2k+1) * 2^k = Sum_{k=0..n} A034867(n,k) * 2^k = (1/n!) * Sum_{k=0..n} A131980(n,k) * 2^k. - Tom Copeland, Nov 30 2007
Equals row sums of unsigned triangle A133156. - Gary W. Adamson, Apr 21 2008
a(n) (n >= 3) is the determinant of the (n-1) X (n-1) tridiagonal matrix with diagonal entries 2, superdiagonal entries 1 and subdiagonal entries -1. - Emeric Deutsch, Aug 29 2008
a(n) = A000045(n) + Sum_{k=1..n-1} A000045(k)*a(n-k). - Roger L. Bagula and Gary W. Adamson, Sep 07 2008
From Hieronymus Fischer, Jan 02 2009: (Start)
fract((1+sqrt(2))^n) = (1/2)*(1 + (-1)^n) - (-1)^n*(1+sqrt(2))^(-n) = (1/2)*(1 + (-1)^n) - (1-sqrt(2))^n.
See A001622 for a general formula concerning the fractional parts of powers of numbers x > 1, which satisfy x - x^(-1) = floor(x).
a(n) = round((1+sqrt(2))^n/(2*sqrt(2))) for n > 0. (End) [last formula corrected by Josh Inman, Mar 05 2024]
a(n) = ((4+sqrt(18))*(1+sqrt(2))^n + (4-sqrt(18))*(1-sqrt(2))^n)/4 offset 0. - Al Hakanson (hawkuu(AT)gmail.com), Aug 08 2009
If p[i] = Fibonacci(i) and if A is the Hessenberg matrix of order n defined by A[i,j] = p[j-i+1] when i<=j, A[i,j]=-1 when i=j+1, and A[i,j]=0 otherwise, then, for n >= 1, a(n) = det A. - Milan Janjic, May 08 2010
a(n) = 3*a(n-1) - a(n-2) - a(n-3), n > 2. - Gary Detlefs, Sep 09 2010
From Charlie Marion, Apr 13 2011: (Start)
a(n) = 2*(a(2k-1) + a(2k))*a(n-2k) - a(n-4k).
a(n) = 2*(a(2k) + a(2k+1))*a(n-2k-1) + a(n-4k-2). (End)
G.f.: x/(1 - 2*x - x^2) = sqrt(2)*G(0)/4; G(k) = ((-1)^k) - 1/(((sqrt(2) + 1)^(2*k)) - x*((sqrt(2) + 1)^(2*k))/(x + ((sqrt(2) - 1)^(2*k + 1))/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 02 2011
In general, for n > k, a(n) = a(k+1)*a(n-k) + a(k)*a(n-k-1). See definition of Pell numbers and the formula for Sep 04 2008. - Charlie Marion, Jan 17 2012
Sum{n>=1} (-1)^(n-1)/(a(n)*a(n+1)) = sqrt(2) - 1. - Vladimir Shevelev, Feb 22 2013
From Vladimir Shevelev, Feb 24 2013: (Start)
(1) Expression a(n+1) via a(n): a(n+1) = a(n) + sqrt(2*a^2(n) + (-1)^n);
(2) a(n+1)^2 - a(n)*a(n+2) = (-1)^n;
(3) Sum_{k=1..n} (-1)^(k-1)/(a(k)*a(k+1)) = a(n)/a(n+1);
(4) a(n)/a(n+1) = sqrt(2) - 1 + r(n), where |r(n)| < 1/(a(n+1)*a(n+2)). (End)
a(-n) = -(-1)^n * a(n). - Michael Somos, Jun 01 2013
G.f.: G(0)/(2+2*x) - 1/(1+x), where G(k) = 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Aug 10 2013
G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(4*k+2 + x)/( x*(4*k+4 + x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 30 2013
a(n) = Sum_{r=0..n-1} Sum_{k=0..n-r-1} binomial(r+k,k)*binomial(k,n-k-r-1). - Peter Luschny, Nov 16 2013
a(n) = Sum_{k=1,3,5,...<=n} C(n,k)*2^((k-1)/2). - Vladimir Shevelev, Feb 06 2014
a(2n) = 2*a(n)*(a(n-1) + a(n)). - John Blythe Dobson, Mar 08 2014
a(k*n) = a(k)*a(k*n-k+1) + a(k-1)*a(k*n-k). - Charlie Marion, Mar 27 2014
a(k*n) = 2*a(k)*(a(k*n-k)+a(k*n-k-1)) + (-1)^k*a(k*n-2k). - Charlie Marion, Mar 30 2014
a(n+1) = (1+sqrt(2))*a(n) + (1-sqrt(2))^n. - Art DuPre, Apr 04 2014
a(n+1) = (1-sqrt(2))*a(n) + (1+sqrt(2))^n. - Art DuPre, Apr 04 2014
a(n) = F(n) + Sum_{k=1..n} F(k)*a(n-k), n >= 0 where F(n) the Fibonacci numbers A000045. - Ralf Stephan, May 23 2014
a(n) = round(sqrt(a(2n) + a(2n-1)))/2. - Richard R. Forberg, Jun 22 2014
a(n) = Product_{k divides n} A008555(k). - Tom Edgar, Jan 28 2015
a(n+k)^2 - A002203(k)*a(n)*a(n+k) + (-1)^k*a(n)^2 = (-1)^n*a(k)^2. - Alexander Samokrutov, Aug 06 2015
a(n) = 2^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], -1) for n >= 2. - Peter Luschny, Dec 17 2015
a(n+1) = Sum_{k=0..n} binomial(n,k)*2^floor(k/2). - Tony Foster III, May 07 2017
a(n) = exp((i*Pi*n)/2)*sinh(n*arccosh(-i))/sqrt(2). - Peter Luschny, Mar 07 2018
From Rogério Serôdio, Mar 30 2018: (Start)
Some properties:
(1) a(n)^2 - a(n-2)^2 = 2*a(n-1)*(a(n) + a(n-2)) (see A005319);
(2) a(n-k)*a(n+k) = a(n)^2 + (-1)^(n+k+1)*a(k)^2;
(3) Sum_{k=2..n+1} a(k)*a(k-1) = a(n+1)^2 if n is odd, else a(n+1)^2 - 1 if n is even;
(4) a(n) - a(n-2*k+1) = (A077444(k) - 1)*a(n-2*k+1) + a(n-4*k+2);
(5) Sum_{k=n..n+9} a(k) = 41*A001333(n+5). (End)
From Kai Wang, Dec 30 2019: (Start)
a(m+r)*a(n+s) - a(m+s)*a(n+r) = -(-1)^(n+s)*a(m-n)*a(r-s).
a(m+r)*a(n+s) + a(m+s)*a(n+r) = (2*A002203(m+n+r+s) - (-1)^(n+s)*A002203(m-n)*A002203(r-s))/8.
A002203(m+r)*A002203(n+s) - A002203(m+s)*A002203(n+r) = (-1)^(n+s)*8*a(m-n)*a(r-s).
A002203(m+r)*A002203(n+s) - 8*a(m+s)*a(n+r) = (-1)^(n+s)*A002203(m-n)*A002203(r-s).
A002203(m+r)*A002203(n+s) + 8*a(m+s)*a(n+r) = 2*A002203(m+n+r+s)+ (-1)^(n+s)*8*a(m-n)*a(r-s). (End)
From Kai Wang, Jan 12 2020: (Start)
a(n)^2 - a(n+1)*a(n-1) = (-1)^(n-1).
a(n)^2 - a(n+r)*a(n-r) = (-1)^(n-r)*a(r)^2.
a(m)*a(n+1) - a(m+1)*a(n) = (-1)^n*a(m-n).
a(m-n) = (-1)^n (a(m)*A002203(n) - A002203(m)*a(n))/2.
a(m+n) = (a(m)*A002203(n) + A002203(m)*a(n))/2.
A002203(n)^2 - A002203(n+r)*A002203(n-r) = (-1)^(n-r-1)*8*a(r)^2.
A002203(m)*A002203(n+1) - A002203(m+1)*A002203(n) = (-1)^(n-1)*8*a(m-n).
A002203(m-n) = (-1)^(n)*(A002203(m)*A002203(n) - 8*a(m)*a(n) )/2.
A002203(m+n) = (A002203(m)*A002203(n) + 8*a(m)*a(n) )/2. (End)
From Kai Wang, Mar 03 2020: (Start)
Sum_{m>=1} arctan(2/a(2*m+1)) = arctan(1/2).
Sum_{m>=2} arctan(2/a(2*m+1)) = arctan(1/12).
In general, for n > 0,
Sum_{m>=n} arctan(2/a(2*m+1)) = arctan(1/a(2*n)). (End)
a(n) = (A001333(n+3*k) + (-1)^(k-1)*A001333(n-3*k)) / (20*A041085(k-1)) for any k>=1. - Paul Curtz, Jun 23 2021
Sum_{i=0..n} a(i)*J(n-i) = (a(n+1) + a(n) - J(n+2))/2 for J(n) = A001045(n). - Greg Dresden, Jan 05 2022
From Peter Bala, Aug 20 2022: (Start)
Sum_{n >= 1} 1/(a(2*n) + 1/a(2*n)) = 1/2.
Sum_{n >= 1} 1/(a(2*n+1) - 1/a(2*n+1)) = 1/4. Both series telescope - see A075870 and A005319.
Product_{n >= 1} ( 1 + 2/a(2*n) ) = 1 + sqrt(2).
Product_{n >= 2} ( 1 - 2/a(2*n) ) = (1/3)*(1 + sqrt(2)). (End)
G.f. = 1/(1 - Sum_{k>=1} Fibonacci(k)*x^k). - Enrique Navarrete, Dec 17 2023
Sum_{n >=1} 1/a(n) = 1.84220304982752858079237158327980838... - R. J. Mathar, Feb 05 2024
a(n) = ((3^(n+1) + 1)^(n-1) mod (9^(n+1) - 2)) mod (3^(n+1) - 1). - Joseph M. Shunia, Jun 06 2024
EXAMPLE
G.f. = x + 2*x^2 + 5*x^3 + 12*x^4 + 29*x^5 + 70*x^6 + 169*x^7 + 408*x^8 + 985*x^9 + ...
From Enrique Navarrete, Dec 15 2023: (Start)
From the comment on compositions with Fibonacci number of parts, F(n), there are F(1)=1 type of 1, F(2)=1 type of 2, F(3)=2 types of 3, F(4)=3 types of 4, F(5)=5 types of 5 and F(6)=8 types of 6.
The following table gives the number of compositions of n=6 with Fibonacci number of parts:
Composition, number of such compositions, number of compositions of this type:
6, 1, 8;
5+1, 2, 10;
4+2, 2, 6;
3+3, 1, 4;
4+1+1, 3, 9;
3+2+1, 6, 12;
2+2+2, 1, 1;
3+1+1+1, 4, 8;
2+2+1+1, 6, 6;
2+1+1+1+1, 5, 5;
1+1+1+1+1+1, 1, 1;
for a total of a(6)=70 compositions of n=6. (End).
MAPLE
A000129 := proc(n) option remember; if n <=1 then n; else 2*procname(n-1)+procname(n-2); fi; end;
a:= n-> (<<2|1>, <1|0>>^n)[1, 2]: seq(a(n), n=0..40); # Alois P. Heinz, Aug 01 2008
A000129 := n -> `if`(n<2, n, 2^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], -1)):
seq(simplify(A000129(n)), n=0..31); # Peter Luschny, Dec 17 2015
MATHEMATICA
CoefficientList[Series[x/(1 - 2*x - x^2), {x, 0, 60}], x] (* Stefan Steinerberger, Apr 08 2006 *)
Expand[Table[((1 + Sqrt[2])^n - (1 - Sqrt[2])^n)/(2Sqrt[2]), {n, 0, 30}]] (* Artur Jasinski, Dec 10 2006 *)
LinearRecurrence[{2, 1}, {0, 1}, 60] (* Harvey P. Dale, Jan 04 2012 *)
a[ n_] := With[ {s = Sqrt@2}, ((1 + s)^n - (1 - s)^n) / (2 s)] // Simplify; (* Michael Somos, Jun 01 2013 *)
Table[Fibonacci[n, 2], {n, 0, 20}] (* Vladimir Reshetnikov, May 08 2016 *)
Fibonacci[Range[0, 20], 2] (* Eric W. Weisstein, Sep 30 2017 *)
a[ n_] := ChebyshevU[n - 1, I] / I^(n - 1); (* Michael Somos, Oct 30 2021 *)
PROG
(PARI) default(realprecision, 2000); for (n=0, 4000, a=contfracpnqn(vector(n, i, 1+(i>1)))[2, 1]; if (a > 10^(10^3 - 6), break); write("b000129.txt", n, " ", a)); \\ Harry J. Smith, Jun 12 2009
(PARI) {a(n) = imag( (1 + quadgen( 8))^n )}; /* Michael Somos, Jun 01 2013 */
(PARI) {a(n) = if( n<0, -(-1)^n, 1) * contfracpnqn( vector( abs(n), i, 1 + (i>1))) [2, 1]}; /* Michael Somos, Jun 01 2013 */
(PARI) a(n)=([2, 1; 1, 0]^n)[2, 1] \\ Charles R Greathouse IV, Mar 04 2014
(PARI) {a(n) = polchebyshev(n-1, 2, I) / I^(n-1)}; /* Michael Somos, Oct 30 2021 */
(Sage) [lucas_number1(n, 2, -1) for n in range(30)] # Zerinvary Lajos, Apr 22 2009
(Haskell)
a000129 n = a000129_list !! n
a000129_list = 0 : 1 : zipWith (+) a000129_list (map (2 *) $ tail a000129_list)
-- Reinhard Zumkeller, Jan 05 2012, Feb 05 2011
(Maxima)
a[0]:0$
a[1]:1$
a[n]:=2*a[n-1]+a[n-2]$
A000129(n):=a[n]$
makelist(A000129(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */
(Maxima) makelist((%i)^(n-1)*ultraspherical(n-1, 1, -%i), n, 0, 24), expand; /* Emanuele Munarini, Mar 07 2018 */
(Magma) [0] cat [n le 2 select n else 2*Self(n-1) + Self(n-2): n in [1..35]]; // Vincenzo Librandi, Aug 08 2015
(GAP) a := [0, 1];; for n in [3..10^3] do a[n] := 2 * a[n-1] + a[n-2]; od; A000129 := a; # Muniru A Asiru, Oct 16 2017
(Python)
from itertools import islice
def A000129_gen(): # generator of terms
a, b = 0, 1
yield from [a, b]
while True:
a, b = b, a+2*b
yield b
A000129_list = list(islice(A000129_gen(), 20)) # Chai Wah Wu, Jan 11 2022
CROSSREFS
Partial sums of A001333.
2nd row of A172236.
a(n) = A054456(n-1, 0), n>=1 (first column of triangle).
Cf. A175181 (Pisano periods), A214028 (Entry points), A214027 (number of zeros in a fundamental period).
A077985 is a signed version.
INVERT transform of Fibonacci numbers (A000045).
Cf. A038207.
The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.
Cf. A048739.
Cf. A073133.
Cf. A041085.
Sequences with g.f. 1/(1-k*x-x^2) or x/(1-k*x-x^2): A000045 (k=1), this sequence (k=2), A006190 (k=3), A001076 (k=4), A052918 (k=5), A005668 (k=6), A054413 (k=7), A041025 (k=8), A099371 (k=9), A041041 (k=10), A049666 (k=11), A041061 (k=12), A140455 (k=13), A041085 (k=14), A154597 (k=15), A041113 (k=16), A178765 (k=17), A041145 (k=18), A243399 (k=19), A041181 (k=20).
KEYWORD
nonn,easy,core,cofr,nice,frac
STATUS
approved
Pell-Lucas numbers: numerators of continued fraction convergents to sqrt(2).
(Formerly M2665 N1064)
+10
356
1, 1, 3, 7, 17, 41, 99, 239, 577, 1393, 3363, 8119, 19601, 47321, 114243, 275807, 665857, 1607521, 3880899, 9369319, 22619537, 54608393, 131836323, 318281039, 768398401, 1855077841, 4478554083, 10812186007, 26102926097, 63018038201, 152139002499, 367296043199
OFFSET
0,3
COMMENTS
Number of n-step non-selfintersecting paths starting at (0,0) with steps of types (1,0), (-1,0) or (0,1) [Stanley].
Number of n steps one-sided prudent walks with east, west and north steps. - Shanzhen Gao, Apr 26 2011
Number of ternary strings of length n-1 with subwords (0,2) and (2,0) not allowed. - Olivier Gérard, Aug 28 2012
Number of symmetric 2n X 2 or (2n-1) X 2 crossword puzzle grids: all white squares are edge connected; at least 1 white square on every edge of grid; 180-degree rotational symmetry. - Erich Friedman
a(n+1) is the number of ways to put molecules on a 2 X n ladder lattice so that the molecules do not touch each other.
In other words, a(n+1) is the number of independent vertex sets and vertex covers in the n-ladder graph P_2 X P_n. - Eric W. Weisstein, Apr 04 2017
Number of (n-1) X 2 binary arrays with a path of adjacent 1's from top row to bottom row, see A359576. - R. H. Hardin, Mar 16 2002
a(2*n+1) with b(2*n+1) := A000129(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation a^2 - 2*b^2 = -1.
a(2*n) with b(2*n) := A000129(2*n), n >= 1, give all (positive integer) solutions to Pell equation a^2 - 2*b^2 = +1 (see Emerson reference).
Bisection: a(2*n) = T(n,3) = A001541(n), n >= 0 and a(2*n+1) = S(2*n,2*sqrt(2)) = A002315(n), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. See A053120, resp. A049310.
Binomial transform of A077957. - Paul Barry, Feb 25 2003
For n > 0, the number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 4 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 2, s(n) = 2. - Herbert Kociemba, Jun 02 2004
For n > 1, a(n) corresponds to the longer side of a near right-angled isosceles triangle, one of the equal sides being A000129(n). - Lekraj Beedassy, Aug 06 2004
Exponents of terms in the series F(x,1), where F is determined by the equation F(x,y) = xy + F(x^2*y,x). - Jonathan Sondow, Dec 18 2004
Number of n-words from the alphabet A={0,1,2} which two neighbors differ by at most 1. - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Aug 30 2006
Consider the mapping f(a/b) = (a + 2b)/(a + b). Taking a = b = 1 to start with and carrying out this mapping repeatedly on each new (reduced) rational number gives the following sequence 1/1, 3/2, 7/5, 17/12, 41/29, ... converging to 2^(1/2). Sequence contains the numerators. - Amarnath Murthy, Mar 22 2003 [Amended by Paul E. Black (paul.black(AT)nist.gov), Dec 18 2006]
Odd-indexed prime numerators are prime RMS numbers (A140480) and also NSW primes (A088165). - Ctibor O. Zizka, Aug 13 2008
The intermediate convergents to 2^(1/2) begin with 4/3, 10/7, 24/17, 58/41; essentially, numerators=A052542 and denominators here. - Clark Kimberling, Aug 26 2008
Equals right border of triangle A143966. Starting (1, 3, 7, ...) equals INVERT transform of (1, 2, 2, 2, ...) and row sums of triangle A143966. - Gary W. Adamson, Sep 06 2008
Inverse binomial transform of A006012; Hankel transform is := [1, 2, 0, 0, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Dec 04 2008
From Charlie Marion, Jan 07 2009: (Start)
In general, denominators, a(k,n) and numerators, b(k,n), of continued fraction convergents to sqrt((k+1)/k) may be found as follows:
let a(k,0) = 1, a(k,1) = 2k; for n>0, a(k,2n) = 2*a(k,2n-1) + a(k,2n-2) and a(k,2n+1) = (2k)*a(k,2n) + a(k,2n-1);
let b(k,0) = 1, b(k,1) = 2k+1; for n>0, b(k,2n) = 2*b(k,2n-1) + b(k,2n-2) and b(k,2n+1) = (2k)*b(k,2n) + b(k,2n-1).
For example, the convergents to sqrt(2/1) start 1/1, 3/2, 7/5, 17/12, 41/29.
In general, if a(k,n) and b(k,n) are the denominators and numerators, respectively, of continued fraction convergents to sqrt((k+1)/k) as defined above, then
k*a(k,2n)^2 - a(k,2n-1)*a(k,2n+1) = k = k*a(k,2n-2)*a(k,2n) - a(k,2n-1)^2 and
b(k,2n-1)*b(k,2n+1) - k*b(k,2n)^2 = k+1 = b(k,2n-1)^2 - k*b(k,2n-2)*b(k,2n);
for example, if k=1 and n=3, then b(1,n)=a(n+1) and
1*a(1,6)^2 - a(1,5)*a(1,7) = 1*169^2 - 70*408 = 1;
1*a(1,4)*a(1,6) - a(1,5)^2 = 1*29*169 - 70^2 = 1;
b(1,5)*b(1,7) - 1*b(1,6)^2 = 99*577 - 1*239^2 = 2;
b(1,5)^2 - 1*b(1,4)*b(1,6) = 99^2 - 1*41*239 = 2.
(End)
This sequence occurs in the lower bound of the order of the set of equivalent resistances of n equal resistors combined in series and in parallel (A048211). - Sameen Ahmed Khan, Jun 28 2010
Let M = a triangle with the Fibonacci series in each column, but the leftmost column is shifted upwards one row. A001333 = lim_{n->infinity} M^n, the left-shifted vector considered as a sequence. - Gary W. Adamson, Jul 27 2010
a(n) is the number of compositions of n when there are 1 type of 1 and 2 types of other natural numbers. - Milan Janjic, Aug 13 2010
Equals the INVERTi transform of A055099. - Gary W. Adamson, Aug 14 2010
From L. Edson Jeffery, Apr 04 2011: (Start)
Let U be the unit-primitive matrix (see [Jeffery])
U = U_(8,2) = (0 0 1 0)
(0 1 0 1)
(1 0 2 0)
(0 2 0 1).
Then a(n) = (1/4)*Trace(U^n). (See also A084130, A006012.)
(End)
For n >= 1, row sums of triangle
m/k.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1.....2
.2..|..1.....2.....4
.3..|..1.....4.....4.....8
.4..|..1.....4....12.....8....16
.5..|..1.....6....12....32....16....32
.6..|..1.....6....24....32....80....32....64
.7..|..1.....8....24....80....80...192....64...128
which is the triangle for numbers 2^k*C(m,k) with duplicated diagonals. - Vladimir Shevelev, Apr 12 2012
a(n) is also the number of ways to place k non-attacking wazirs on a 2 X n board, summed over all k >= 0 (a wazir is a leaper [0,1]). - Vaclav Kotesovec, May 08 2012
The sequences a(n) and b(n) := A000129(n) are entries of powers of the special case of the Brahmagupta Matrix - for details see Suryanarayan's paper. Further, as Suryanarayan remark, if we set A = 2*(a(n) + b(n))*b(n), B = a(n)*(a(n) + 2*b(n)), C = a(n)^2 + 2*a(n)*b(n) + 2*b(n)^2 we obtain integral solutions of the Pythagorean relation A^2 + B^2 = C^2, where A and B are consecutive integers. - Roman Witula, Jul 28 2012
Pisano period lengths: 1, 1, 8, 4, 12, 8, 6, 4, 24, 12, 24, 8, 28, 6, 24, 8, 16, 24, 40, 12, .... - R. J. Mathar, Aug 10 2012
This sequence and A000129 give the diagonal numbers described by Theon of Smyrna. - Sture Sjöstedt, Oct 20 2012
a(n) is the top left entry of the n-th power of any of the following six 3 X 3 binary matrices: [1, 1, 1; 1, 1, 1; 1, 0, 0] or [1, 1, 1; 1, 1, 0; 1, 1, 0] or [1, 1, 1; 1, 0, 1; 1, 1, 0] or [1, 1, 1; 1, 1, 0; 1, 0, 1] or [1, 1, 1; 1, 0, 1; 1, 0, 1] or [1, 1, 1; 1, 0, 0; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
If p is prime, a(p) == 1 (mod p) (compare with similar comment for A000032). - Creighton Dement, Oct 11 2005, modified by Davide Colazingari, Jun 26 2016
a(n) = A000129(n) + A000129(n-1), where A000129(n) is the n-th Pell Number; e.g., a(6) = 99 = A000129(6) + A000129(5) = 70 + 29. Hence the sequence of fractions has the form 1 + A000129(n-1)/A000129(n), and the ratio A000129(n-1)/A000129(n)converges to sqrt(2) - 1. - Gregory L. Simay, Nov 30 2018
For n > 0, a(n+1) is the length of tau^n(1) where tau is the morphism: 1 -> 101, 0 -> 1. See Song and Wu. - Michel Marcus, Jul 21 2020
For n > 0, a(n) is the number of nonisomorphic quasitrivial semigroups with n elements, see Devillet, Marichal, Teheux. A292932 is the number of labeled quasitrivial semigroups. - Peter Jipsen, Mar 28 2021
a(n) is the permanent of the n X n tridiagonal matrix defined in A332602. - Stefano Spezia, Apr 12 2022
From Greg Dresden, May 08 2023: (Start)
For n >= 2, 4*a(n) is the number of ways to tile this T-shaped figure of length n-1 with two colors of squares and one color of domino; shown here is the figure of length 5 (corresponding to n=6), and it has 4*a(6) = 396 different tilings.
._
|_|_ _ _ _
|_|_|_|_|_|
|_|
(End)
12*a(n) = number of walks of length n in the cyclic Kautz digraph CK(3,4). - Miquel A. Fiol, Feb 15 2024
REFERENCES
M. R. Bacon and C. K. Cook, Some properties of Oresme numbers and convolutions ..., Fib. Q., 62:3 (2024), 233-240.
A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
J. Devillet, J.‐L. Marichal, and B. Teheux, Classifications of quasitrivial semigroups, Semigroup Forum, 100 (2020), 743-764.
Maribel Díaz Noguera [Maribel Del Carmen Díaz Noguera], Rigoberto Flores, Jose L. Ramirez, and Martha Romero Rojas, Catalan identities for generalized Fibonacci polynomials, Fib. Q., 62:2 (2024), 100-111.
Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
R. P. Grimaldi, Ternary strings with no consecutive 0's and no consecutive 1's, Congressus Numerantium, 205 (2011), 129-149.
A. F. Horadam, R. P. Loh, and A. G. Shannon, Divisibility properties of some Fibonacci-type sequences, pp. 55-64 of Combinatorial Mathematics VI (Armidale 1978), Lect. Notes Math. 748, 1979.
Thomas Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
Kin Y. Li, Math Problem Book I, 2001, p. 24, Problem 159.
I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 102, Problem 10.
J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 224.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Volume 1 (1986), p. 203, Example 4.1.2.
A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.
R. C. Tilley et al., The cell growth problem for filaments, Proc. Louisiana Conf. Combinatorics, ed. R. C. Mullin et al., Baton Rouge, 1970, 310-339.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 34.
LINKS
Antoni Amengual, The intriguing properties of the equivalent resistances of n equal resistors combined in series and in parallel, American Journal of Physics, 68(2), (2000) 175-179. [From Sameen Ahmed Khan, Jun 28 2010]
Joerg Arndt, Matters Computational (The Fxtbook), pp. 313-315.
C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002. [Broken link]
S. Barbero, U. Cerruti, and N. Murru, A Generalization of the Binomial Interpolated Operator and its Action on Linear Recurrent Sequences, J. Int. Seq. 13 (2010) # 10.9.7.
Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
M. Bicknell, A Primer on the Pell Sequence and related sequences, Fibonacci Quarterly, Vol. 13, No. 4, 1975, pp. 345-349.
Florin P. Boca and Christopher Linden, On Minkowski type question mark functions associated with even or odd continued fractions, arXiv:1705.01238 [math.DS], 2017. See p. 7.
J. Bodeen, S. Butler, T. Kim, X. Sun, and S. Wang, Tiling a strip with triangles, El. J. Combinat. 21 (1) (2014) P1.7
K. Böhmová, C. Dalfó, and C. Huemer, The diameter of cyclic Kautz digraphs, Filomat 31(20) (2017) 6551-6560.
Fan Chung and R. L. Graham, Primitive juggling sequences, Am. Math. Monthly 115 (3) (2008) 185-194.
Jimmy Devillet, Jean-Luc Marichal, and Bruno Teheux, Classifications of quasitrivial semigroups, arXiv:1811.11113 [math.RA], 2020.
K. Dohmen, Closed-form expansions for the universal edge elimination polynomial, arXiv preprint arXiv:1403.0969 [math.CO], 2014.
Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, arXiv:1907.06517 [math.CO], 2019.
E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242, see Ex. 1, pp. 237-238.
Reinhardt Euler, The Fibonacci Number of a Grid Graph and a New Class of Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.6.
Bruce Fang, Pamela E. Harris, Brian M. Kamau, and David Wang, Vacillating parking functions, arXiv:2402.02538 [math.CO], 2024.
M. C. Firengiz and A. Dil, Generalized Euler-Seidel method for second order recurrence relations, Notes on Number Theory and Discrete Mathematics, Vol. 20, 2014, No. 4, 21-32.
Shanzhen Gaoa and Keh-Hsun Chen, Tackling Sequences From Prudent Self-Avoiding Walks, FCS'14, The 2014 International Conference on Foundations of Computer Science.
S. Gao and H. Niederhausen, Sequences Arising From Prudent Self-Avoiding Walks, 2010.
David Garth and Adam Gouge, Affinely Self-Generating Sets and Morphisms, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.5.
Martin Griffiths, Pell identities via a quadratic field, International Journal of Mathematical Education in Science and Technology, 2013.
F. Harary and R. W. Robinson, Tapeworms, Unpublished manuscript, circa 1973. (Annotated scanned copy)
Gábor Hetyei, The type B permutohedron and the poset of intervals as a Tchebyshev transform, Discrete Comput Geom 71, 918-944 (2024).
A. F. Horadam, R. P. Loh, and A. G. Shannon, Divisibility properties of some Fibonacci-type sequences, pp. 55-64 of Combinatorial Mathematics VI (Armidale 1978), Lect. Notes Math. 748, 1979. [Annotated scanned copy]
Lucas Hoots, Strong quota pair systems and May's theorem on median semilattices, Univ. Louisville, Electronic Theses and Dissertations. Paper 2253, (2015).
Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
L. E. Jeffery, Unit-primitive matrices.
Sameen Ahmed Khan, The bounds of the set of equivalent resistances of n equal resistors combined in series and in parallel, arXiv:1004.3346 [physics.gen-ph], 2010. [From Sameen Ahmed Khan, Jun 28 2010]
Tanya Khovanova, Recursive Sequences.
Y. Kong, Ligand binding on ladder lattices, Biophysical Chemistry, Vol. 81 (1999), pp. 7-21.
Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, pp. 392-393.
Dmitry Kruchinin, Integer properties of a composition of exponential generating functions, arXiv:1211.2100 [math.NT], 2012.
Markus Kuba and Alois Panholzer, Enumeration formulas for pattern restricted Stirling permutations, Discrete Math. 312 (2012), no. 21, 3179--3194. MR2957938. - From N. J. A. Sloane, Sep 25 2012
Pablo Lam-Estrada, Myriam Rosalía Maldonado-Ramírez, José Luis López-Bonilla, and Fausto Jarquín-Zárate, The sequences of Fibonacci and Lucas for each real quadratic fields Q(Sqrt(d)), arXiv:1904.13002 [math.NT], 2019.
J. V. Leyendekkers and A. G. Shannon, Pellian sequence relationships among pi, e, sqrt(2), Notes on Number Theory and Discrete Mathematics, Vol. 18, 2012, No. 2, 58-62. See Table 2. - N. J. A. Sloane, Dec 23 2012
Kin Y. Li, p. 24, Problem 159.
Barry Mazur, Arithmetic on curves, Bull. Amer. Math. Soc. 14 (1986), 207-259.
aBa Mbirika, Janee Schrader, and Jürgen Spilker, Pell and Associated Pell Braid Sequences as GCDs of Sums of k Consecutive Pell, Balancing, and Related Numbers, J. Int. Seq. (2023) Vol. 26, Art. 23.6.4.
Emanuele Munarini, Combinatorial properties of the antichains of a garland, Integers, 9 (2009), 353-374.
Serge Perrine, About the diophantine equation z^2 = 32y^2 - 16, SCIREA Journal of Mathematics (2019) Vol. 4, Issue 5, 126-139.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
H. Prodinger and R. F. Tichy, Fibonacci numbers of graphs, Fibonacci Quarterly, 20, 1982, 16-21.
John Riordan and N. J. A. Sloane, Correspondence, 1974
Alexander Shelupanov, Oleg Evsyutin, Anton Konev, Evgeniy Kostyuchenko, Dmitry Kruchinin, and Dmitry Nikiforov, Information Security Methods-Modern Research Directions, Symmetry (2019) Vol. 11, Issue 2, 150.
Haocong Song and Wen Wu, Hankel determinants of a Sturmian sequence, arXiv:2007.09940 [math.CO], 2020. See pp. 2, 4.
Claude Soudieux, De l'infini arithmétique, Zurich, 1960. [Annotated scans of selected pages. Contains many sequences including A1333]
E. R. Suryanarayan, The Brahmagupta Polynomials, Fibonacci Quarterly, 34.1 (1996), 30-39.
Wipawee Tangjai, A Non-standard Ternary Representation of Integers, Thai J. Math (2020) Special Issue: Annual Meeting in Mathematics 2019, 269-283.
G. Tasi and F. Mizukami, Quantum algebraic-combinatoric study of the conformational properties of n-alkanes. I, J. Math. Chemistry, 25, 1999, 55-64 (see Eq. (21)).
G. Tasi et al., Quantum algebraic-combinatoric study of the conformational properties of n-alkanes. II, J. Math. Chemistry, 27, 2000, 191-199 (see p. 193).
V. Thebault, Concerning two classes of remarkable perfect square pairs, Amer. Math. Monthly, 56 (1949), 443-448.
Lucyna Trojnar-Spelina and Iwona Włoch, On Generalized Pell and Pell-Lucas Numbers, Iranian Journal of Science and Technology, Transactions A: Science (2019), 1-7.
Andrew Vince, The average size of a connected vertex set of a graph - Explicit formulas and open problems, Journal of Graph Theory, Volume 97, Issue 1 pp. 82-103.
Eric Weisstein's World of Mathematics, Independent Vertex Set.
Eric Weisstein's World of Mathematics, Ladder Graph.
Eric Weisstein's World of Mathematics, Pythagoras's Constant.
Eric Weisstein's World of Mathematics, Square Root.
Eric Weisstein's World of Mathematics, Square Triangular Number.
Eric Weisstein's World of Mathematics, Vertex Cover.
FORMULA
a(n) = A055642(A125058(n)). - Reinhard Zumkeller, Feb 02 2007
a(n) = 2a(n-1) + a(n-2);
a(n) = ((1-sqrt(2))^n + (1+sqrt(2))^n)/2.
a(n)+a(n+1) = 2 A000129(n+1). 2*a(n) = A002203(n).
G.f.: (1 - x) / (1 - 2*x - x^2) = 1 / (1 - x / (1 - 2*x / (1 + x))). - Simon Plouffe in his 1992 dissertation.
A000129(2n) = 2*A000129(n)*a(n). - John McNamara, Oct 30 2002
a(n) = (-i)^n * T(n, i), with T(n, x) Chebyshev's polynomials of the first kind A053120 and i^2 = -1.
a(n) = a(n-1) + A052542(n-1), n>1. a(n)/A052542(n) converges to sqrt(1/2). - Mario Catalani (mario.catalani(AT)unito.it), Apr 29 2003
E.g.f.: exp(x)cosh(x*sqrt(2)). - Paul Barry, May 08 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)2^k. - Paul Barry, May 13 2003
For n > 0, a(n)^2 - (1 + (-1)^(n))/2 = Sum_{k=0..n-1} ((2k+1)*A001653(n-1-k)); e.g., 17^2 - 1 = 288 = 1*169 + 3*29 + 5*5 + 7*1; 7^2 = 49 = 1*29 + 3*5 + 5*1. - Charlie Marion, Jul 18 2003
a(n+2) = A078343(n+1) + A048654(n). - Creighton Dement, Jan 19 2005
a(n) = A000129(n) + A000129(n-1) = A001109(n)/A000129(n) = sqrt(A001110(n)/A000129(n)^2) = ceiling(sqrt(A001108(n))). - Henry Bottomley, Apr 18 2000
Also the first differences of A000129 (the Pell numbers) because A052937(n) = A000129(n+1) + 1. - Graeme McRae, Aug 03 2006
a(n) = Sum_{k=0..n} A122542(n,k). - Philippe Deléham, Oct 08 2006
For another recurrence see A000129.
a(n) = Sum_{k=0..n} A098158(n,k)*2^(n-k). - Philippe Deléham, Dec 26 2007
a(n) = upper left and lower right terms of [1,1; 2,1]^n. - Gary W. Adamson, Mar 12 2008
If p[1]=1, and p[i]=2, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010
For n>=2, a(n)=F_n(2)+F_(n+1)(2), where F_n(x) is Fibonacci polynomial (cf. A049310): F_n(x) = Sum_{i=0..floor((n-1)/2)} binomial(n-i-1,i)x^(n-2*i-1). - Vladimir Shevelev, Apr 13 2012
a(-n) = (-1)^n * a(n). - Michael Somos, Sep 02 2012
Dirichlet g.f.: (PolyLog(s,1-sqrt(2)) + PolyLog(s,1+sqrt(2)))/2. - Ilya Gutkovskiy, Jun 26 2016
a(n) = A000129(n) - A000129(n-1), where A000129(n) is the n-th Pell Number. Hence the continued fraction is of the form 1-(A000129(n-1)/A000129(n)). - Gregory L. Simay, Nov 09 2018
a(n) = (A000129(n+3) + A000129(n-3))/10, n>=3. - Paul Curtz, Jun 16 2021
a(n) = (A000129(n+6) - A000129(n-6))/140, n>=6. - Paul Curtz, Jun 20 2021
a(n) = round((1/2)*sqrt(Product_{k=1..n} 4*(1 + sin(k*Pi/n)^2))), for n>=1. - Greg Dresden, Dec 28 2021
a(n)^2 + a(n+1)^2 = A075870(n+1) = 2*(b(n)^2 + b(n+1)^2) for all n in Z where b(n) := A000129(n). - Michael Somos, Apr 02 2022
a(n) = 2*A048739(n-2)+1. - R. J. Mathar, Feb 01 2024
Sum_{n>=1} 1/a(n) = 1.5766479516393275911191017828913332473... - R. J. Mathar, Feb 05 2024
EXAMPLE
Convergents are 1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 1393/985, 3363/2378, 8119/5741, 19601/13860, 47321/33461, 114243/80782, ... = A001333/A000129.
The 15 3 X 2 crossword grids, with white squares represented by an o:
ooo ooo ooo ooo ooo ooo ooo oo. o.o .oo o.. .o. ..o oo. .oo
ooo oo. o.o .oo o.. .o. ..o ooo ooo ooo ooo ooo ooo .oo oo.
G.f. = 1 + x + 3*x^2 + 7*x^3 + 17*x^4 + 41*x^5 + 99*x^6 + 239*x^7 + 577*x^8 + ...
MAPLE
A001333 := proc(n) option remember; if n=0 then 1 elif n=1 then 1 else 2*procname(n-1)+procname(n-2) fi end;
Digits := 50; A001333 := n-> round((1/2)*(1+sqrt(2))^n);
with(numtheory): cf := cfrac (sqrt(2), 1000): [seq(nthnumer(cf, i), i=0..50)];
a:= n-> (M-> M[2, 1]+M[2, 2])(<<2|1>, <1|0>>^n):
seq(a(n), n=0..33); # Alois P. Heinz, Aug 01 2008
A001333List := proc(m) local A, P, n; A := [1, 1]; P := [1, 1];
for n from 1 to m - 2 do P := ListTools:-PartialSums([op(A), P[-2]]);
A := [op(A), P[-1]] od; A end: A001333List(32); # Peter Luschny, Mar 26 2022
MATHEMATICA
Insert[Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[2], n]]], {n, 1, 40}], 1, 1] (* Stefan Steinerberger, Apr 08 2006 *)
Table[((1 - Sqrt[2])^n + (1 + Sqrt[2])^n)/2, {n, 0, 29}] // Simplify (* Robert G. Wilson v, May 02 2006 *)
a[0] = 1; a[1] = 1; a[n_] := a[n] = 2a[n - 1] + a[n - 2]; Table[a@n, {n, 0, 29}] (* Robert G. Wilson v, May 02 2006 *)
Table[ MatrixPower[{{1, 2}, {1, 1}}, n][[1, 1]], {n, 0, 30}] (* Robert G. Wilson v, May 02 2006 *)
a=c=0; t={b=1}; Do[c=a+b+c; AppendTo[t, c]; a=b; b=c, {n, 40}]; t (* Vladimir Joseph Stephan Orlovsky, Mar 23 2009 *)
LinearRecurrence[{2, 1}, {1, 1}, 40] (* Vladimir Joseph Stephan Orlovsky, Mar 23 2009 *)
Join[{1}, Numerator[Convergents[Sqrt[2], 30]]] (* Harvey P. Dale, Aug 22 2011 *)
Table[(-I)^n ChebyshevT[n, I], {n, 10}] (* Eric W. Weisstein, Apr 04 2017 *)
CoefficientList[Series[(-1 + x)/(-1 + 2 x + x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
Table[Sqrt[(ChebyshevT[n, 3] + (-1)^n)/2], {n, 0, 20}] (* Eric W. Weisstein, Apr 17 2018 *)
PROG
(PARI) {a(n) = if( n<0, (-1)^n, 1) * contfracpnqn( vector( abs(n), i, 1 + (i>1))) [1, 1]}; /* Michael Somos, Sep 02 2012 */
(PARI) {a(n) = polchebyshev(n, 1, I) / I^n}; /* Michael Somos, Sep 02 2012 */
(PARI) a(n) = real((1 + quadgen(8))^n); \\ Michel Marcus, Mar 16 2021
(PARI) { default(realprecision, 2000); for (n=0, 4000, a=contfracpnqn(vector(n, i, 1+(i>1)))[1, 1]; if (a > 10^(10^3 - 6), break); write("b001333.txt", n, " ", a); ); } \\ Harry J. Smith, Jun 12 2009
(Sage) from sage.combinat.sloane_functions import recur_gen2
it = recur_gen2(1, 1, 2, 1)
[next(it) for i in range(30)] ## Zerinvary Lajos, Jun 24 2008
(Sage) [lucas_number2(n, 2, -1)/2 for n in range(0, 30)] # Zerinvary Lajos, Apr 30 2009
(Haskell)
a001333 n = a001333_list !! n
a001333_list = 1 : 1 : zipWith (+)
a001333_list (map (* 2) $ tail a001333_list)
-- Reinhard Zumkeller, Jul 08 2012
(Magma) [n le 2 select 1 else 2*Self(n-1)+Self(n-2): n in [1..35]]; // Vincenzo Librandi, Nov 10 2018
(Python)
from functools import cache
@cache
def a(n): return 1 if n < 2 else 2*a(n-1) + a(n-2)
print([a(n) for n in range(32)]) # Michael S. Branicky, Nov 13 2022
CROSSREFS
For denominators see A000129.
See A040000 for the continued fraction expansion of sqrt(2).
See also A078057 which is the same sequence without the initial 1.
Cf. also A002203, A152113.
Row sums of unsigned Chebyshev T-triangle A053120. a(n)= A054458(n, 0) (first column of convolution triangle).
Row sums of A140750, A160756, A135837.
Equals A034182(n-1) + 2 and A084128(n)/2^n. First differences of A052937. Partial sums of A052542. Pairwise sums of A048624. Bisection of A002965.
The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.
Second row of the array in A135597.
Cf. A055099.
Cf. A028859, A001906 / A088305, A033303, A000225, A095263, A003945, A006356, A002478, A214260, A001911 and A000217 for other restricted ternary words.
Cf. Triangle A106513 (alternating row sums).
Equals A293004 + 1.
Cf. A033539, A332602, A086395 (subseq. of primes).
KEYWORD
nonn,cofr,easy,core,nice,frac
EXTENSIONS
Chebyshev comments from Wolfdieter Lang, Jan 10 2003
STATUS
approved
a(n) = 2*(a(n-1) + a(n-2)), a(0) = 0, a(1) = 1.
+10
135
0, 1, 2, 6, 16, 44, 120, 328, 896, 2448, 6688, 18272, 49920, 136384, 372608, 1017984, 2781184, 7598336, 20759040, 56714752, 154947584, 423324672, 1156544512, 3159738368, 8632565760, 23584608256, 64434348032, 176037912576, 480944521216, 1313964867584
OFFSET
0,3
COMMENTS
Individually, both this sequence and A028859 are convergents to 1 + sqrt(3). Mutually, both sequences are convergents to 2 + sqrt(3) and 1 + sqrt(3)/2. - Klaus E. Kastberg (kastberg(AT)hotkey.net.au), Nov 04 2001
The number of (s(0), s(1), ..., s(n+1)) such that 0 < s(i) < 6 and |s(i) - s(i-1)| <= 1 for i = 1, 2, ..., n + 1, s(0) = 2, s(n+1) = 3. - Herbert Kociemba, Jun 02 2004
The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the denominators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 4 times the bottom to get the new top. The limit of the sequence of fractions is sqrt(4). - Cino Hilliard, Sep 25 2005
The Hankel transform of this sequence is [1, 2, 0, 0, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Nov 21 2007
[1, 3; 1, 1]^n *[1, 0] = [A026150(n), a(n)]. - Gary W. Adamson, Mar 21 2008
(1 + sqrt(3))^n = A026150(n) + a(n)*sqrt(3). - Gary W. Adamson, Mar 21 2008
a(n+1) is the number of ways to tile a board of length n using red and blue tiles of length one and two. - Geoffrey Critzer, Feb 07 2009
Starting with offset 1 = INVERT transform of the Jacobsthal sequence, A001045: (1, 1, 3, 5, 11, 21, ...). - Gary W. Adamson, May 12 2009
Starting with "1" = INVERTi transform of A007482: (1, 3, 11, 39, 139, ...). - Gary W. Adamson, Aug 06 2010
An elephant sequence, see A175654. For the corner squares four A[5] vectors, with decimal values 85, 277, 337 and 340, lead to this sequence (without the leading 0). For the central square these vectors lead to the companion sequence A026150, without the first leading 1. - Johannes W. Meijer, Aug 15 2010
The sequence 0, 1, -2, 6, -16, 44, -120, 328, -896, ... (with alternating signs) is the Lucas U(-2,-2)-sequence. - R. J. Mathar, Jan 08 2013
a(n+1) counts n-walks (closed) on the graph G(1-vertex;1-loop,1-loop,2-loop,2-loop). - David Neil McGrath, Dec 11 2014
Number of binary strings of length 2*n - 2 in the regular language (00+11+0101+1010)*. - Jeffrey Shallit, Dec 14 2015
For n >= 1, a(n) equals the number of words of length n - 1 over {0, 1, 2, 3} in which 0 and 1 avoid runs of odd lengths. - Milan Janjic, Dec 17 2015
a(n+1) is the number of compositions of n into parts 1 and 2, both of two kinds. - Gregory L. Simay, Sep 20 2017
Number of associative, quasitrivial, and order-preserving binary operations on the n-element set {1, ..., n} that have neutral elements. - J. Devillet, Sep 28 2017
(1 + sqrt(3))^n = A026150(n) + a(n)*sqrt(3), for n >= 0; integers in the real quadratic number field Q(sqrt(3)). - Wolfdieter Lang, Feb 10 2018
Starting with 1, 2, 6, 16, ..., number of permutations of length n>0 avoiding the partially ordered pattern (POP) {1>3, 1>4} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is larger than the third and fourth elements. - Sergey Kitaev, Dec 09 2020
REFERENCES
John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, p. 16.
LINKS
A. Abdurrahman, CM Method and Expansion of Numbers, arXiv:1909.10889 [math.NT], 2019.
Jean-Luc Baril, Nathanaël Hassler, Sergey Kirgizov, and José L. Ramírez, Grand zigzag knight's paths, arXiv:2402.04851 [math.CO], 2024.
Paul Barry, On the Gap-sum and Gap-product Sequences of Integer Sequences, arXiv:2104.05593 [math.CO], 2021.
Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
M. Couceiro, J. Devillet, and J.-L. Marichal, Quasitrivial semigroups: characterizations and enumerations, arXiv:1709.09162 [math.RA], 2017.
M. Diepenbroek, M. Maus, and A. Stoll, Pattern Avoidance in Reverse Double Lists, Preprint 2015. See Table 3.
Sergio Falcón, Binomial Transform of the Generalized k-Fibonacci Numbers, Communications in Mathematics and Applications (2019) Vol. 10, No. 3, 643-651.
Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
Dale Gerdemann Bird Flock, Youtube video, 2011.
A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=q=2.
D. Jhala, G. P. S. Rathore, and K. Sisodiya, Some Properties of k-Jacobsthal Numbers with Arithmetic Indexes, Turkish Journal of Analysis and Number Theory, 2014, Vol. 2, No. 4, 119-124.
Tanya Khovanova, Recursive Sequences
Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38,5 (2000) 408-419; Eqs. (39), (41) and (45), lhs, m=2.
D. H. Lehmer, On Lucas's test for the primality of Mersenne's numbers, Journal of the London Mathematical Society 1.3 (1935): 162-165. See U_n.
Alan Prince, Counting parses, Rutgers Optimality Archive, 2010.
FORMULA
a(n) = (-I*sqrt(2))^(n-1)*U(n-1, I/sqrt(2)) where U(n, x) is the Chebyshev U-polynomial. - Wolfdieter Lang
G.f.: x/(1 - 2*x - 2*x^2).
From Paul Barry, Sep 17 2003: (Start)
E.g.f.: x*exp(x)*(sinh(sqrt(3)*x)/sqrt(3) + cosh(sqrt(3)*x)).
a(n) = (1 + sqrt(3))^(n-1)*(1/2 + sqrt(3)/6) + (1 - sqrt(3))^(n-1)*(1/2 - sqrt(3)/6), for n>0.
Binomial transform of 1, 1, 3, 3, 9, 9, ... Binomial transform is A079935. (End)
a(n) = Sum_{k=0..floor(n/2)} binomial(n - k, k)*2^(n - k). - Paul Barry, Jul 13 2004
a(n) = A080040(n) - A028860(n+1). - Creighton Dement, Jan 19 2005
a(n) = Sum_{k=0..n} A112899(n,k). - Philippe Deléham, Nov 21 2007
a(n) = Sum_{k=0..n} A063967(n,k). - Philippe Deléham, Nov 03 2006
a(n) = ((1 + sqrt(3))^n - (1 - sqrt(3))^n)/(2*sqrt(3)).
a(n) = Sum_{k=0..n} binomial(n, 2*k + 1) * 3^k.
Binomial transform of expansion of sinh(sqrt(3)x)/sqrt(3) (0, 1, 0, 3, 0, 9, ...). E.g.f.: exp(x)*sinh(sqrt(3)*x)/sqrt(3). - Paul Barry, May 09 2003
a(n) = (1/3)*Sum_{k=1..5} sin(Pi*k/2)*sin(2*Pi*k/3)*(1 + 2*cos(Pi*k/6))^n, n >= 1. - Herbert Kociemba, Jun 02 2004
a(n+1) = ((3 + sqrt(3))*(1 + sqrt(3))^n + (3 - sqrt(3))*(1 - sqrt(3))^n)/6. - Al Hakanson (hawkuu(AT)gmail.com), Jun 29 2009
Antidiagonals sums of A081577. - J. M. Bergot, Dec 15 2012
G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(4*k + 2 + 2*x)/(x*(4*k + 4 + 2*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 30 2013
a(n) = 2^(n - 1)*hypergeom([1 - n/2, (1 - n)/2], [1 - n], -2) for n >= 3. - Peter Luschny, Dec 16 2015
Sum_{k=0..n} a(k)*2^(n-k) = a(n+2)/2 - 2^n. - Greg Dresden, Feb 11 2022
a(n) = 2^floor(n/2) * A002530(n). - Gregory L. Simay, Sep 22 2022
From Peter Bala, May 08 2024: (Start)
G.f.: x/(1 - 2*x - 2*x^2) = Sum_{n >= 0} x^(n+1) *( Product_{k = 1..n} (k + 2*x + 1)/(1 + k*x) )
Also x/(1 - 2*x - 2*x^2) = Sum_{n >= 0} (2*x)^n *( x*Product_{k = 1..n} (m*k + 2 - m + x)/(1 + 2*m*k*x) ) for arbitrary m (both series are telescoping). (End)
MAPLE
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]+2*a[n-2]od: seq(a[n], n=0..33); # Zerinvary Lajos, Dec 15 2008
a := n -> `if`(n<3, n, 2^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], -2));
seq(simplify(a(n)), n=0..29); # Peter Luschny, Dec 16 2015
MATHEMATICA
Expand[Table[((1 + Sqrt[3])^n - (1 - Sqrt[3])^n)/(2Sqrt[3]), {n, 0, 30}]] (* Artur Jasinski, Dec 10 2006 *)
a[n_]:=(MatrixPower[{{1, 3}, {1, 1}}, n].{{1}, {1}})[[2, 1]]; Table[a[n], {n, -1, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
LinearRecurrence[{2, 2}, {0, 1}, 30] (* Robert G. Wilson v, Apr 13 2013 *)
Round@Table[Fibonacci[n, Sqrt[2]] 2^((n - 1)/2), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 15 2016 *)
nxt[{a_, b_}]:={b, 2(a+b)}; NestList[nxt, {0, 1}, 30][[All, 1]] (* Harvey P. Dale, Sep 17 2022 *)
PROG
(Sage) [lucas_number1(n, 2, -2) for n in range(0, 30)] # Zerinvary Lajos, Apr 22 2009
(Sage)
a = BinaryRecurrenceSequence(2, 2)
print([a(n) for n in (0..29)]) # Peter Luschny, Aug 29 2016
(PARI) Vec(x/(1-2*x-2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jun 10 2011
(PARI) A002605(n)=([2, 2; 1, 0]^n)[2, 1] \\ M. F. Hasler, Aug 06 2018
(Magma) [Floor(((1 + Sqrt(3))^n - (1 - Sqrt(3))^n)/(2*Sqrt(3))): n in [0..30]]; // Vincenzo Librandi, Aug 18 2011
(Haskell)
a002605 n = a002605_list !! n
a002605_list =
0 : 1 : map (* 2) (zipWith (+) a002605_list (tail a002605_list))
-- Reinhard Zumkeller, Oct 15 2011
(Magma) [n le 2 select n-1 else 2*Self(n-1) + 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 07 2018
CROSSREFS
First differences are given by A026150.
a(n) = A073387(n, 0), n>=0 (first column of triangle).
Equals (1/3) A083337. First differences of A077846. Pairwise sums of A028860 and abs(A077917).
a(n) = A028860(n)/2 apart from the initial terms.
Row sums of A081577 and row sums of triangle A156710.
The following sequences (and others) belong to the same family: A001333, A000129, A026150, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.
Cf. A175289 (Pisano periods).
Cf. A002530.
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Apr 15 2009
STATUS
approved
Triangle formed from even-numbered columns of triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x).
+10
133
1, 1, 1, 2, 3, 1, 5, 9, 5, 1, 14, 28, 20, 7, 1, 42, 90, 75, 35, 9, 1, 132, 297, 275, 154, 54, 11, 1, 429, 1001, 1001, 637, 273, 77, 13, 1, 1430, 3432, 3640, 2548, 1260, 440, 104, 15, 1, 4862, 11934, 13260, 9996, 5508, 2244, 663, 135, 17, 1
OFFSET
0,4
COMMENTS
T(n,k) is the number of lattice paths from (0,0) to (n,n) with steps E = (1,0) and N = (0,1) which touch but do not cross the line x - y = k and only situated above this line; example: T(3,2) = 5 because we have EENNNE, EENNEN, EENENN, ENEENN, NEEENN. - Philippe Deléham, May 23 2005
The matrix inverse of this triangle is the triangular matrix T(n,k) = (-1)^(n+k)* A085478(n,k). - Philippe Deléham, May 26 2005
Essentially the same as A050155 except with a leading diagonal A000108 (Catalan numbers) 1, 1, 2, 5, 14, 42, 132, 429, .... - Philippe Deléham, May 31 2005
Number of Grand Dyck paths of semilength n and having k downward returns to the x-axis. (A Grand Dyck path of semilength n is a path in the half-plane x>=0, starting at (0,0), ending at (2n,0) and consisting of steps u=(1,1) and d=(1,-1)). Example: T(3,2)=5 because we have u(d)uud(d),uud(d)u(d),u(d)u(d)du,u(d)duu(d) and duu(d)u(d) (the downward returns to the x-axis are shown between parentheses). - Emeric Deutsch, May 06 2006
Riordan array (c(x),x*c(x)^2) where c(x) is the g.f. of A000108; inverse array is (1/(1+x),x/(1+x)^2). - Philippe Deléham, Feb 12 2007
The triangle may also be generated from M^n*[1,0,0,0,0,0,0,0,...], where M is the infinite tridiagonal matrix with all 1's in the super and subdiagonals and [1,2,2,2,2,2,2,...] in the main diagonal. - Philippe Deléham, Feb 26 2007
Inverse binomial matrix applied to A124733. Binomial matrix applied to A089942. - Philippe Deléham, Feb 26 2007
Number of standard tableaux of shape (n+k,n-k). - Philippe Deléham, Mar 22 2007
From Philippe Deléham, Mar 30 2007: (Start)
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1. Other triangles arise by choosing different values for (x,y):
(0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970
(1,0) -> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877;
(1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598;
(2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954;
(3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791;
(4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. (End)
The table U(n,k) = Sum_{j=0..n} T(n,j)*k^j is given in A098474. - Philippe Deléham, Mar 29 2007
Sequence read mod 2 gives A127872. - Philippe Deléham, Apr 12 2007
Number of 2n step walks from (0,0) to (2n,2k) and consisting of step u=(1,1) and d=(1,-1) and the path stays in the nonnegative quadrant. Example: T(3,0)=5 because we have uuuddd, uududd, ududud, uduudd, uuddud; T(3,1)=9 because we have uuuudd, uuuddu, uuudud, ududuu, uuduud, uduudu, uudduu, uduuud, uududu; T(3,2)=5 because we have uuuuud, uuuudu, uuuduu, uuduuu, uduuuu; T(3,3)=1 because we have uuuuuu. - Philippe Deléham, Apr 16 2007, Apr 17 2007, Apr 18 2007
Triangular matrix, read by rows, equal to the matrix inverse of triangle A129818. - Philippe Deléham, Jun 19 2007
Let Sum_{n>=0} a(n)*x^n = (1+x)/(1-mx+x^2) = o.g.f. of A_m, then Sum_{k=0..n} T(n,k)*a(k) = (m+2)^n. Related expansions of A_m are: A099493, A033999, A057078, A057077, A057079, A005408, A002878, A001834, A030221, A002315, A033890, A057080, A057081, A054320, A097783, A077416, A126866, A028230, A161591, for m=-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, respectively. - Philippe Deléham, Nov 16 2009
The Kn11, Kn12, Fi1 and Fi2 triangle sums link the triangle given above with three sequences; see the crossrefs. For the definitions of these triangle sums, see A180662. - Johannes W. Meijer, Apr 20 2011
4^n = (n-th row terms) dot (first n+1 odd integer terms). Example: 4^4 = 256 = (14, 28, 20, 7, 1) dot (1, 3, 5, 7, 9) = (14 + 84 + 100 + 49 + 9) = 256. - Gary W. Adamson, Jun 13 2011
The linear system of n equations with coefficients defined by the first n rows solve for diagonal lengths of regular polygons with N= 2n+1 edges; the constants c^0, c^1, c^2, ... are on the right hand side, where c = 2 + 2*cos(2*Pi/N). Example: take the first 4 rows relating to the 9-gon (nonagon), N = 2*4 + 1; with c = 2 + 2*cos(2*Pi/9) = 3.5320888.... The equations are (1,0,0,0) = 1; (1,1,0,0) = c; (2,3,1,0) = c^2; (5,9,5,1) = c^3. The solutions are 1, 2.53208..., 2.87938..., and 1.87938...; the four distinct diagonal lengths of the 9-gon (nonagon) with edge = 1. (Cf. comment in A089942 which uses the analogous operations but with c = 1 + 2*cos(2*Pi/9).) - Gary W. Adamson, Sep 21 2011
Also called the Lobb numbers, after Andrew Lobb, are a natural generalization of the Catalan numbers, given by L(m,n)=(2m+1)*Binomial(2n,m+n)/(m+n+1), where n >= m >= 0. For m=0, we get the n-th Catalan number. See added reference. - Jayanta Basu, Apr 30 2013
From Wolfdieter Lang, Sep 20 2013: (Start)
T(n, k) = A053121(2*n, 2*k). T(n, k) appears in the formula for the (2*n)-th power of the algebraic number rho(N):= 2*cos(Pi/N) = R(N, 2) in terms of the odd-indexed diagonal/side length ratios R(N, 2*k+1) = S(2*k, rho(N)) in the regular N-gon inscribed in the unit circle (length unit 1). S(n, x) are Chebyshev's S polynomials (see A049310):
rho(N)^(2*n) = Sum_{k=0..n} T(n, k)*R(N, 2*k+1), n >= 0, identical in N > = 1. For a proof see the Sep 21 2013 comment under A053121. Note that this is the unreduced version if R(N, j) with j > delta(N), the degree of the algebraic number rho(N) (see A055034), appears.
For the odd powers of rho(n) see A039598. (End)
Unsigned coefficients of polynomial numerators of Eqn. 2.1 of the Chakravarty and Kodama paper, defining the polynomials of A067311. - Tom Copeland, May 26 2016
The triangle is the Riordan square of the Catalan numbers in the sense of A321620. - Peter Luschny, Feb 14 2023
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
T. Myers and L. Shapiro, Some applications of the sequence 1, 5, 22, 93, 386, ... to Dyck paths and ordered trees, Congressus Numerant., 204 (2010), 93-104.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Quang T. Bach and Jeffrey B. Remmel, Generating functions for descents over permutations which avoid sets of consecutive patterns, arXiv:1510.04319 [math.CO], 2015 (see p.25).
M. Barnabei, F. Bonetti and M. Silimbani, Two permutation classes enumerated by the central binomial coefficients, arXiv preprint arXiv:1301.1790 [math.CO], 2013 and J. Int. Seq. 16 (2013) #13.3.8
Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
Paul Barry and A. Hennessy, The Euler-Seidel Matrix, Hankel Matrices and Moment Sequences, J. Int. Seq. 13 (2010), Article 10.8.2, example 15.
Paul Barry, On the Hurwitz Transform of Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.8.7.
Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
Jonathan E. Beagley and Paul Drube, Combinatorics of Tableau Inversions, Electron. J. Combin., 22 (2015), #P2.44.
S. Chakravarty and Y. Kodama, A generating function for the N-soliton solutions of the Kadomtsev-Petviashvili II equation, arXiv preprint arXiv:0802.0524v2 [nlin.SI], 2008.
Wun-Seng Chou, Tian-Xiao He, and Peter J.-S. Shiue, On the Primality of the Generalized Fuss-Catalan Numbers, J. Int. Seqs., Vol. 21 (2018), #18.2.1.
Johann Cigler, Some elementary observations on Narayana polynomials and related topics, arXiv:1611.05252 [math.CO], 2016. See p. 11.
Paul Drube, Generalized Path Pairs and Fuss-Catalan Triangles, arXiv:2007.01892 [math.CO], 2020. See Figure 4 p. 8.
T.-X. He and L. W. Shapiro, Fuss-Catalan matrices, their weighted sums, and stabilizer subgroups of the Riordan group, Lin. Alg. Applic. 532 (2017) 25-41, example p 32.
Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
Thomas Koshy, Lobb's generalization of Catalan's parenthesization problem, The College Mathematics Journal 40 (2), March 2009, 99-107, DOI:10.1080/07468342.2009.11922344.
Huyile Liang, Jeffrey Remmel, and Sainan Zheng, Stieltjes moment sequences of polynomials, arXiv:1710.05795 [math.CO], 2017, see page 11.
Andrew Lobb, Deriving the n-th Catalan number, Mathematical Gazette, Vol. 83, No. 496 (March 1999), 109-110.
Donatella Merlini and Renzo Sprugnoli, Arithmetic into geometric progressions through Riordan arrays, Discrete Mathematics 340.2 (2017): 160-174. See page 161.
Pedro J. Miana, Hideyuki Ohtsuka, and Natalia Romero, Sums of powers of Catalan triangle numbers, arXiv:1602.04347 [math.NT], 2016 (see 2.8).
A. Papoulis, A new method of inversion of the Laplace transform, Quart. Appl. Math 14 (1957), 405-414. [Annotated scan of selected pages]
Athanasios Papoulis, A new method of inversion of the Laplace transform, Quart. Appl. Math., Vol. 14, No. 4 (1957), 405-414: 124. [Note: there is a typo]
Yidong Sun and Fei Ma, Some new binomial sums related to the Catalan triangle, Electronic Journal of Combinatorics 21(1) (2014), #P1.33
Yidong Sun and Fei Ma, Four transformations on the Catalan triangle, arXiv preprint arXiv:1305.2017 [math.CO], 2013.
Sun, Yidong; Ma, Luping Minors of a class of Riordan arrays related to weighted partial Motzkin paths. Eur. J. Comb. 39, 157-169 (2014), Table 2.2.
Wikipedia, Lobb number
W.-J. Woan, L. Shapiro and D. G. Rogers, The Catalan numbers, the Lebesgue integral and 4^{n-2}, Amer. Math. Monthly, 104 (1997), 926-931.
Sheng-Liang Yang, Yan-Ni Dong, and Tian-Xiao He, Some matrix identities on colored Motzkin paths, Discrete Mathematics 340.12 (2017), 3081-3091.
FORMULA
T(n,k) = C(2*n-1, n-k) - C(2*n-1, n-k-2), n >= 1, T(0,0) = 1.
From Emeric Deutsch, May 06 2006: (Start)
T(n,k) = (2*k+1)*binomial(2*n,n-k)/(n+k+1).
G.f.: G(t,z)=1/(1-(1+t)*z*C), where C=(1-sqrt(1-4*z))/(2*z) is the Catalan function. (End)
The following formulas were added by Philippe Deléham during 2003 to 2009: (Start)
Triangle T(n, k) read by rows; given by A000012 DELTA A000007, where DELTA is Deléham's operator defined in A084938.
T(n, k) = C(2*n, n-k)*(2*k+1)/(n+k+1). Sum(k>=0; T(n, k)*T(m, k) = A000108(n+m)); A000108: numbers of Catalan.
T(n, 0) = A000108(n); T(n, k) = 0 if k>n; for k>0, T(n, k) = Sum_{j=1..n} T(n-j, k-1)*A000108(j).
T(n, k) = A009766(n+k, n-k) = A033184(n+k+1, 2k+1).
G.f. for column k: Sum_{n>=0} T(n, k)*x^n = x^k*C(x)^(2*k+1) where C(x) = Sum_{n>=0} A000108(n)*x^n is g.f. for Catalan numbers, A000108.
T(0, 0) = 1, T(n, k) = 0 if n<0 or n<k; T(n, 0) = T(n-1, 0) + T(n-1, 1); for k>=1, T(n, k) = T(n-1, k-1) + 2*T(n-1, k) + T(n-1, k+1).
a(n) + a(n+1) = 1 + A000108(m+1) if n = m*(m+3)/2; a(n) + a(n+1) = A039598(n) otherwise.
T(n, k) = A050165(n, n-k).
Sum_{j>=0} T(n-k, j)*A039598(k, j) = A028364(n, k).
Matrix inverse of the triangle T(n, k) = (-1)^(n+k)*binomial(n+k, 2*k) = (-1)^(n+k)*A085478(n, k).
Sum_{k=0..n} T(n, k)*x^k = A000108(n), A000984(n), A007854(n), A076035(n), A076036(n) for x = 0, 1, 2, 3, 4.
Sum_{k=0..n} (2*k+1)*T(n, k) = 4^n.
T(n, k)*(-2)^(n-k) = A114193(n, k).
Sum_{k>=h} T(n,k) = binomial(2n,n-h).
Sum_{k=0..n} T(n,k)*5^k = A127628(n).
Sum_{k=0..n} T(n,k)*7^k = A115970(n).
T(n,k) = Sum_{j=0..n-k} A106566(n+k,2*k+j).
Sum_{k=0..n} T(n,k)*6^k = A126694(n).
Sum_{k=0..n} T(n,k)*A000108(k) = A007852(n+1).
Sum_{k=0..floor(n/2)} T(n-k,k) = A000958(n+1).
Sum_{k=0..n} T(n,k)*(-1)^k = A000007(n).
Sum_{k=0..n} T(n,k)*(-2)^k = (-1)^n*A064310(n).
T(2*n,n) = A126596(n).
Sum_{k=0..n} T(n,k)*(-x)^k = A000007(n), A126983(n), A126984(n), A126982(n), A126986(n), A126987(n), A127017(n), A127016(n), A126985(n), A127053(n) for x=1,2,3,4,5,6,7,8,9,10 respectively.
Sum_{j>=0} T(n,j)*binomial(j,k) = A116395(n,k).
T(n,k) = Sum_{j>=0} A106566(n,j)*binomial(j,k).
T(n,k) = Sum_{j>=0} A127543(n,j)*A038207(j,k).
Sum_{k=0..floor(n/2)} T(n-k,k)*A000108(k) = A101490(n+1).
T(n,k) = A053121(2*n,2*k).
Sum_{k=0..n} T(n,k)*sin((2*k+1)*x) = sin(x)*(2*cos(x))^(2*n).
T(n,n-k) = Sum_{j>=0} (-1)^(n-j)*A094385(n,j)*binomial(j,k).
Sum_{j>=0} A110506(n,j)*binomial(j,k) = Sum_{j>=0} A110510(n,j)*A038207(j,k) = T(n,k)*2^(n-k).
Sum_{j>=0} A110518(n,j)*A027465(j,k) = Sum_{j>=0} A110519(n,j)*A038207(j,k) = T(n,k)*3^(n-k).
Sum_{k=0..n} T(n,k)*A001045(k) = A049027(n), for n>=1.
Sum_{k=0..n} T(n,k)*a(k) = (m+2)^n if Sum_{k>=0} a(k)*x^k = (1+x)/(x^2-m*x+1).
Sum_{k=0..n} T(n,k)*A040000(k) = A001700(n).
Sum_{k=0..n} T(n,k)*A122553(k) = A051924(n+1).
Sum_{k=0..n} T(n,k)*A123932(k) = A051944(n).
Sum_{k=0..n} T(n,k)*k^2 = A000531(n), for n>=1.
Sum_{k=0..n} T(n,k)*A000217(k) = A002457(n-1), for n>=1.
Sum{j>=0} binomial(n,j)*T(j,k)= A124733(n,k).
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000984(n), A089022(n), A035610(n), A130976(n), A130977(n), A130978(n), A130979(n), A130980(n), A131521(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively.
Sum_{k=0..n} T(n,k)*A005043(k) = A127632(n).
Sum_{k=0..n} T(n,k)*A132262(k) = A089022(n).
T(n,k) + T(n,k+1) = A039598(n,k).
T(n,k) = A128899(n,k)+A128899(n,k+1).
Sum_{k=0..n} T(n,k)*A015518(k) = A076025(n), for n>=1. Also Sum_{k=0..n} T(n,k)*A015521(k) = A076026(n), for n>=1.
Sum_{k=0..n} T(n,k)*(-1)^k*x^(n-k) = A033999(n), A000007(n), A064062(n), A110520(n), A132863(n), A132864(n), A132865(n), A132866(n), A132867(n), A132869(n), A132897(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively.
Sum_{k=0..n} T(n,k)*(-1)^(k+1)*A000045(k) = A109262(n), A000045:= Fibonacci numbers.
Sum_{k=0..n} T(n,k)*A000035(k)*A016116(k) = A143464(n).
Sum_{k=0..n} T(n,k)*A016116(k) = A101850(n).
Sum_{k=0..n} T(n,k)*A010684(k) = A100320(n).
Sum_{k=0..n} T(n,k)*A000034(k) = A029651(n).
Sum_{k=0..n} T(n,k)*A010686(k) = A144706(n).
Sum_{k=0..n} T(n,k)*A006130(k-1) = A143646(n), with A006130(-1)=0.
T(n,2*k)+T(n,2*k+1) = A118919(n,k).
Sum_{k=0..j} T(n,k) = A050157(n,j).
Sum_{k=0..2} T(n,k) = A026012(n); Sum_{k=0..3} T(n,k)=A026029(n).
Sum_{k=0..n} T(n,k)*A000045(k+2) = A026671(n).
Sum_{k=0..n} T(n,k)*A000045(k+1) = A026726(n).
Sum_{k=0..n} T(n,k)*A057078(k) = A000012(n).
Sum_{k=0..n} T(n,k)*A108411(k) = A155084(n).
Sum_{k=0..n} T(n,k)*A057077(k) = 2^n = A000079(n).
Sum_{k=0..n} T(n,k)*A057079(k) = 3^n = A000244(n).
Sum_{k=0..n} T(n,k)*(-1)^k*A011782(k) = A000957(n+1).
(End)
T(n,k) = Sum_{j=0..k} binomial(k+j,2j)*(-1)^(k-j)*A000108(n+j). - Paul Barry, Feb 17 2011
Sum_{k=0..n} T(n,k)*A071679(k+1) = A026674(n+1). - Philippe Deléham, Feb 01 2014
Sum_{k=0..n} T(n,k)*(2*k+1)^2 = (4*n+1)*binomial(2*n,n). - Werner Schulte, Jul 22 2015
Sum_{k=0..n} T(n,k)*(2*k+1)^3 = (6*n+1)*4^n. - Werner Schulte, Jul 22 2015
Sum_{k=0..n} (-1)^k*T(n,k)*(2*k+1)^(2*m) = 0 for 0 <= m < n (see also A160562). - Werner Schulte, Dec 03 2015
T(n,k) = GegenbauerC(n-k,-n+1,-1) - GegenbauerC(n-k-1,-n+1,-1). - Peter Luschny, May 13 2016
T(n,n-2) = A014107(n). - R. J. Mathar, Jan 30 2019
T(n,n-3) = n*(2*n-1)*(2*n-5)/3. - R. J. Mathar, Jan 30 2019
T(n,n-4) = n*(n-1)*(2*n-1)*(2*n-7)/6. - R. J. Mathar, Jan 30 2019
T(n,n-5) = n*(n-1)*(2*n-1)*(2*n-3)*(2*n-9)/30. - R. J. Mathar, Jan 30 2019
EXAMPLE
Triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9
0: 1
1: 1 1
2: 2 3 1
3: 5 9 5 1
4: 14 28 20 7 1
5: 42 90 75 35 9 1
6: 132 297 275 154 54 11 1
7: 429 1001 1001 637 273 77 13 1
8: 1430 3432 3640 2548 1260 440 104 15 1
9: 4862 11934 13260 9996 5508 2244 663 135 17 1
... Reformatted by Wolfdieter Lang, Dec 21 2015
From Paul Barry, Feb 17 2011: (Start)
Production matrix begins
1, 1,
1, 2, 1,
0, 1, 2, 1,
0, 0, 1, 2, 1,
0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 0, 1, 2, 1 (End)
From Wolfdieter Lang, Sep 20 2013: (Start)
Example for rho(N) = 2*cos(Pi/N) powers:
n=2: rho(N)^4 = 2*R(N,1) + 3*R(N,3) + 1*R(N, 5) =
2 + 3*S(2, rho(N)) + 1*S(4, rho(N)), identical in N >= 1. For N=4 (the square with only one distinct diagonal), the degree delta(4) = 2, hence R(4, 3) and R(4, 5) can be reduced, namely to R(4, 1) = 1 and R(4, 5) = -R(4,1) = -1, respectively. Therefore, rho(4)^4 =(2*cos(Pi/4))^4 = 2 + 3 -1 = 4. (End)
MAPLE
T:=(n, k)->(2*k+1)*binomial(2*n, n-k)/(n+k+1): for n from 0 to 12 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form # Emeric Deutsch, May 06 2006
T := proc(n, k) option remember; if k = n then 1 elif k > n then 0 elif k = 0 then T(n-1, 0) + T(n-1, 1) else T(n-1, k-1) + 2*T(n-1, k) + T(n-1, k+1) fi end:
seq(seq(T(n, k), k = 0..n), n = 0..9) od; # Peter Luschny, Feb 14 2023
MATHEMATICA
Table[Abs[Differences[Table[Binomial[2 n, n + i], {i, 0, n + 1}]]], {n, 0, 7}] // Flatten (* Geoffrey Critzer, Dec 18 2011 *)
Join[{1}, Flatten[Table[Binomial[2n-1, n-k]-Binomial[2n-1, n-k-2], {n, 10}, {k, 0, n}]]] (* Harvey P. Dale, Dec 18 2011 *)
Flatten[Table[Binomial[2*n, m+n]*(2*m+1)/(m+n+1), {n, 0, 9}, {m, 0, n}]] (* Jayanta Basu, Apr 30 2013 *)
PROG
(Sage) # Algorithm of L. Seidel (1877)
# Prints the first n rows of the triangle
def A039599_triangle(n) :
D = [0]*(n+2); D[1] = 1
b = True ; h = 1
for i in range(2*n-1) :
if b :
for k in range(h, 0, -1) : D[k] += D[k-1]
h += 1
else :
for k in range(1, h, 1) : D[k] += D[k+1]
if b : print([D[z] for z in (1..h-1)])
b = not b
A039599_triangle(10) # Peter Luschny, May 01 2012
(Magma) /* As triangle */ [[Binomial(2*n, k+n)*(2*k+1)/(k+n+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 16 2015
(PARI) a(n, k) = (2*n+1)/(n+k+1)*binomial(2*k, n+k)
trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(a(y, x), ", ")); print(""))
trianglerows(10) \\ Felix Fröhlich, Jun 24 2016
CROSSREFS
Row sums: A000984.
Triangle sums (see the comments): A000958 (Kn11), A001558 (Kn12), A088218 (Fi1, Fi2).
KEYWORD
nonn,tabl,easy,nice
EXTENSIONS
Corrected by Philippe Deléham, Nov 26 2009, Dec 14 2009
STATUS
approved
a(n) = (5^n - 1)/4.
(Formerly M4209)
+10
103
0, 1, 6, 31, 156, 781, 3906, 19531, 97656, 488281, 2441406, 12207031, 61035156, 305175781, 1525878906, 7629394531, 38146972656, 190734863281, 953674316406, 4768371582031, 23841857910156, 119209289550781, 596046447753906, 2980232238769531
OFFSET
0,3
COMMENTS
5^a(n) is the highest power of 5 dividing (5^n)!. - Benoit Cloitre, Feb 04 2002
n such that A002294(n) is not divisible by 5. - Benoit Cloitre, Jan 14 2003
Without leading zero, i.e., sequence {a(n+1) = (5*5^n-1)/4}, this is the binomial transform of A003947. - Paul Barry, May 19 2003 [Edited by M. F. Hasler, Oct 31 2014]
Numbers n such that a(n) is prime are listed in A004061(n) = {3, 7, 11, 13, 47, 127, 149, 181, 619, 929, ...}. Corresponding primes a(n) are listed in A086122(n) = {31, 19531, 12207031, 305175781, 177635683940025046467781066894531, ...}. 3^(m+1) divides a(2*3^m*k). 31 divides a(3k). 13 divides a(4k). 11 divides a(5k). 71 divides a(5k). 7 divides a(6k). 19531 divides a(7k). 313 divides a(8k). 19 divides a(9k). 829 divides a(9k). 71 divides a(10k). 521 divides a(10k). 17 divides a(16k). p divides a(p-1) for all prime p except p = {2,5}. p^(m+1) divides a(p^m*(p-1)) for all prime p except p = {2,5}. p divides a((p-1)/2) for prime p = {11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101, 109, ...} = A045468, Primes congruent to {1, 4} mod 5. p divides a((p-1)/3) for prime p = {13, 67, 127, 163, 181, 199, 211, 241, 313, 337, 367, 379, 409, 457, ...}. p divides a((p-1)/4) for prime p = {101, 109, 149, 181, 269, 389, 401, 409, 449, 461, 521, 541, ...} = A107219, Primes of the form x^2+100y^2. p divides a((p-1)/5) for prime p = {31, 191, 251, 271, 601, 641, 761, 1091, 1861, ...}. p divides a((p-1)/6) for prime p = {181, 199, 211, 241, 379, 409, 631, 691, 739, 769, 1039, ...}. - Alexander Adamchuk, Jan 23 2007
Starting with 1 = convolution square of A026375: (1, 3, 11, 45, 195, 873, ...). - Gary W. Adamson, May 17 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=5, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Jan 27 2010
This is the sequence A(0,1;4,5;2) = A(0,1;6,-5;0) of the family of sequences [a,b:c,d:k] considered by Gary Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
It is the Lucas sequence U(6,5). - Felix P. Muga II, Mar 21 2014
a(2*n+1) is the sum of the numerators and denominators of the reduced fractions 0 < b/5^n < 1 plus 1, with b < 5^n. - J. M. Bergot, Jul 24 2015
The sequence multiplied by 10 (0, 10, 60, 310, 1560, ...) is the maximum number of coins which can be decided by n weighings on 2 balances in the counterfeit coin problem with undecided under/overweight. [Halbeisen and Hungerbuhler, Disc. Math. 147 (1995) 139 Theorem 1]. - R. J. Mathar, Sep 10 2015
Order of the rank-n projective geometry PG(n-1,5) over the finite field GF(5). - Anthony Hernandez, Oct 05 2016
Number of zeros in the substitution system {0 -> 11100, 1 -> 11110} at step n from initial string "1" (1 -> 11110 -> 1111011110111101111011100 -> ...). - Ilya Gutkovskiy, Apr 10 2017
a(n) is the numerator of Sum_{k=1..n} 1/5^k, which approaches a limit of 1/4. The denominators are 5^n. In general, Sum_{k=1..n} 1/x^k approaches a limit of 1/(x-1). It is of interest to note that as x increases, so does the rate of convergence. See Crossrefs for numerators for other values of x which have the general form (x^n-1)/(x-1). - Gary Detlefs, Aug 31 2021
REFERENCES
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Joseph E. Bonin and Joseph P. S. Kung The Number of Points In A Combinatorial Geometry With No 8-Point-Line Minors, Mathematical Essays in Honor of Gian-Carlo Rota, B. Sagan and R. P. Stanley, eds., Birkhäuser, 1998, 271-284.
Carlos M. da Fonseca and Anthony G. Shannon, A formal operator involving Fermatian numbers, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.
Roger B. Eggleton, Maximal Midpoint-Free Subsets of Integers, International Journal of Combinatorics Volume 2015, Article ID 216475, 14 pages.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Eric Weisstein's World of Mathematics, Repunit
FORMULA
Second binomial transform of A015518; binomial transform of A000302 (preceded by 0). - Paul Barry, Mar 28 2003
a(n) = Sum_{k=1..n} binomial(n,k)*4^(k-1). - Paul Barry, Mar 28 2003
a(n) = (-1)^n times the (i, j)-th element of M^n (for all i and j such that i is not equal to j), where M = ((1, -1, 1, -2), (-1, 1, -2, 1), (1, -2, 1, -1), (-2, 1, -1, 1)). - Simone Severini, Nov 25 2004
a(n) = A125118(n,4) for n>3. - Reinhard Zumkeller, Nov 21 2006
a(n) = ((3+sqrt(4))^n - (3-sqrt(4))^n)/4. - Al Hakanson (hawkuu(AT)gmail.com), Dec 31 2008
a(n) = 6*a(n-1) - 5*a(n-2) n>1, a(0)=0, a(1)=1. - Philippe Deléham, Jan 01 2009
From Wolfdieter Lang, Oct 18 2010: (Start)
O.g.f.: x/((1-5*x)*(1-x)).
a(n) = 4*a(n-1) + 5*a(n-2) + 2, a(0)=0, a(1)=1.
a(n) = 5*a(n-1) + a(n-2) - 5*a(n-3) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3), a(0)=0, a(1)=1, a(2)=6. Observation by G. Detlefs. See the W. Lang comment and link. (End)
a(n) = 5*a(n-1) + 1 with n>0, a(0)=0. - Vincenzo Librandi, Nov 17 2010
a(n) = a(n-1) + A000351(n-1) n>0, a(0)=0. - Felix P. Muga II, Mar 19 2014
a(n) = a(n-1) + 20*a(n-2) + 5 for n > 1, a(0)=0, a(1)=1. - Felix P. Muga II, Mar 19 2014
a(n) = A060458(n)/2^(n+2), for n > 0. - R. J. Cano, Sep 25 2014
From Ilya Gutkovskiy, Oct 05 2016: (Start)
E.g.f.: (exp(4*x) - 1)*exp(x)/4.
Convolution of A000351 and A057427. (End)
EXAMPLE
Base 5...........decimal
0......................0
1......................1
11.....................6
111...................31
1111.................156
11111................781
111111..............3906
1111111............19531
11111111...........97656
111111111.........488281
1111111111.......2441406
etc. ...............etc.
- Zerinvary Lajos, Jan 14 2007
MAPLE
a:=n->sum(5^(n-j), j=1..n): seq(a(n), n=0..23); # Zerinvary Lajos, Jan 04 2007
A003463:=1/(5*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=6*a[n-1]-5*a[n-2]od: seq(a[n], n=0..23); # Zerinvary Lajos, Feb 21 2008
MATHEMATICA
lst={}; Do[p=(5^n-1)/4; AppendTo[lst, p], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 29 2008 *)
Table[((5^n-1)/4), {n, 0, 25}] (* Vincenzo Librandi, Aug 20 2012 *)
NestList[5 # + 1 &, 0, 23] (* Bruno Berselli, Feb 06 2013 *)
LinearRecurrence[{6, -5}, {0, 1}, 30] (* Harvey P. Dale, Sep 20 2023 *)
PROG
(Sage) [lucas_number1(n, 6, 5) for n in range(0, 24)] # Zerinvary Lajos, Apr 22 2009
(Sage) [gaussian_binomial(n, 1, 5) for n in range(0, 24)] # Zerinvary Lajos, May 28 2009
(PARI) a(n)=5^n\4; \\ Charles R Greathouse IV, Jul 15 2011
(Maxima) A003463(n):=floor((5^n-1)/4)$ makelist(A003463(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */
(Magma) [(5^n-1)/4 : n in [0..30]]; // Wesley Ivan Hurt, Sep 25 2014
KEYWORD
nonn,easy
STATUS
approved
p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S - S^2 - S^3.
+10
57
1, 3, 9, 26, 74, 210, 596, 1692, 4804, 13640, 38728, 109960, 312208, 886448, 2516880, 7146144, 20289952, 57608992, 163568448, 464417728, 1318615104, 3743926400, 10630080640, 30181847168, 85694918912, 243312448256, 690833811712, 1961475291648, 5569190816256
OFFSET
0,2
COMMENTS
Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
In the following guide to p-INVERT sequences using s = (1,1,1,1,1,...) = A000012, in some cases t(1,1,1,1,1,...) is a shifted version of the cited sequence:
p(S) t(1,1,1,1,1,...)
1 - S A000079
1 - S^2 A000079
1 - S^3 A024495
1 - S^4 A000749
1 - S^5 A139761
1 - S^6 A290993
1 - S^7 A290994
1 - S^8 A290995
1 - S - S^2 A001906
1 - S - S^3 A116703
1 - S - S^4 A290996
1 - S^3 - S^6 A290997
1 - S^2 - S^3 A095263
1 - S^3 - S^4 A290998
1 - 2 S^2 A052542
1 - 3 S^2 A002605
1 - 4 S^2 A015518
1 - 5 S^2 A163305
1 - 6 S^2 A290999
1 - 7 S^2 A291008
1 - 8 S^2 A291001
(1 - S)^2 A045623
(1 - S)^3 A058396
(1 - S)^4 A062109
(1 - S)^5 A169792
(1 - S)^6 A169793
(1 - S^2)^2 A024007
1 - 2 S - 2 S^2 A052530
1 - 3 S - 2 S^2 A060801
(1 - S)(1 - 2 S) A053581
(1 - 2 S)(1 - 3 S) A291002
(1 - S)(1 - 2 S)(1 - 3 S)(1 - 4 S) A291003
(1 - 2 S)^2 A120926
(1 - 3 S)^2 A291004
1 + S - S^2 A000045 (Fibonacci numbers starting with -1)
1 - S - S^2 - S^3 A291000
1 - S - S^2 - S^3 - S^4 A291006
1 - S - S^2 - S^3 - S^4 - S^5 A291007
1 - S^2 - S^4 A290990
(1 - S)(1 - 3 S) A291009
(1 - S)(1 - 2 S)(1 - 3 S) A291010
(1 - S)^2 (1 - 2 S) A291011
(1 - S^2)(1 - 2 S) A291012
(1 - S^2)^3 A291013
(1 - S^3)^2 A291014
1 - S - S^2 + S^3 A045891
1 - 2 S - S^2 + S^3 A291015
1 - 3 S + S^2 A136775
1 - 4 S + S^2 A291016
1 - 5 S + S^2 A291017
1 - 6 S + S^2 A291018
1 - S - S^2 - S^3 + S^4 A291019
1 - S - S^2 - S^3 - S^4 + S^5 A291020
1 - S - S^2 - S^3 + S^4 + S^5 A291021
1 - S - 2 S^2 + 2 S^3 A175658
1 - 3 S^2 + 2 S^3 A291023
(1 - 2 S^2)^2 A291024
(1 - S^3)^3 A291143
(1 - S - S^2)^2 A209917
FORMULA
G.f.: (-1 + x - x^2)/(-1 + 4 x - 4 x^2 + 2 x^3).
a(n) = 4*a(n-1) - 4*a(n-2) + 2*a(n-3) for n >= 4.
MATHEMATICA
z = 60; s = x/(1 - x); p = 1 - s - s^2 - s^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291000 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 22 2017
STATUS
approved
a(n) = 3*a(n-1) + 4*a(n-2), a(0) = 0, a(1) = 1.
+10
56
0, 1, 3, 13, 51, 205, 819, 3277, 13107, 52429, 209715, 838861, 3355443, 13421773, 53687091, 214748365, 858993459, 3435973837, 13743895347, 54975581389, 219902325555, 879609302221, 3518437208883, 14073748835533
OFFSET
0,3
COMMENTS
Inverse binomial transform of powers of 5 (A000351) preceded by 0. - Paul Barry, Apr 02 2003
Number of walks of length n between any two distinct vertices of the complete graph K_5. Example: a(2)=3 because the walks of length 2 between the vertices A and B of the complete graph ABCDE are: ACB, ADB, AEB. - Emeric Deutsch, Apr 01 2004
The terms of the sequence are the number of segments (sides) per iteration of the space-filling Peano-Hilbert curve. - Giorgio Balzarotti, Mar 16 2006
General form: k=4^n-k. Also: A001045, A078008, A097073, A115341, A015518, A054878. - Vladimir Joseph Stephan Orlovsky, Dec 11 2008
A further inverse binomial transform generates A015441. - Paul Curtz, Nov 01 2009
For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 3's along the central diagonal, and 2's along the subdiagonal and the superdiagonal. - John M. Campbell, Jul 19 2011
Pisano period lengths: 1, 1, 2, 2, 10, 2, 6, 2, 6, 10, 10, 2, 6, 6, 10, 2, 4, 6, 18, 10, ... - R. J. Mathar, Aug 10 2012
Sum_{i=0..m} (-1)^(m+i)*4^i, for m >= 0, gives the terms after 0. - Bruno Berselli, Aug 28 2013
The ratio a(n+1)/a(n) converges to 4 as n approaches infinity. - Felix P. Muga II, Mar 09 2014
This is the Lucas sequence U(P=3,Q=-4), and hence for n>=0, a(n+2)/a(n+1) equals the continued fraction 3 + 4/(3 + 4/(3 + 4/(3 + ... + 4/3))) with n 4's. - Greg Dresden, Oct 07 2019
For n > 0, gcd(a(n), a(n+1)) = 1. - Kengbo Lu, Jul 27 2020
LINKS
A. Abdurrahman, CM Method and Expansion of Numbers, arXiv:1909.10889 [math.NT], 2019.
Jean-Paul Allouche, Jeffrey Shallit, Zhixiong Wen, Wen Wu, and Jiemeng Zhang, Sum-free sets generated by the period-k-folding sequences and some Sturmian sequences, arXiv:1911.01687 [math.CO], 2019.
J. Borowska and L. Lacinska, Recurrence form of determinant of a heptadiagonal symmetric Toeplitz matrix, J. Appl. Math. Comp. Mech. 13 (2014) 19-16, remark 2 for permanent of tridiagonal Toeplitz matrices a=3, b=2.
Ji Young Choi, A Generalization of Collatz Functions and Jacobsthal Numbers, J. Int. Seq., Vol. 21 (2018), Article 18.5.4.
E. M. García-Caballero, S. G. Moreno, and M. P. Prophet, A complete view of Viète-like infinite products with Fibonacci and Lucas numbers, Applied Mathematics and Computation 247 (2014) 703-711.
Dale Gerdemann, Fractal generated from (3,4) recursion A015521, YouTube Video, Dec 4, 2014.
F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, March 2014; Preprint on ResearchGate.
FORMULA
From Paul Barry, Apr 02 2003: (Start)
a(n) = (4^n - (-1)^n)/5.
E.g.f.: (exp(4*x) - exp(-x))/5. (End)
a(n) = Sum_{k=1..n} binomial(n, k)*(-1)^(n+k)*5^(k-1). - Paul Barry, May 13 2003
a(2*n) = 4*a(2*n-1) - 1, a(2*n+1) = 4*a(2*n) + 1. In general this is true for all sequences of the type a(n) + a(n+1) = q^(n): i.e., a(2*n) = q*a(2n-1) - 1 and a(2*n+1) = q*a(2*n) + 1. - Amarnath Murthy, Jul 15 2003
From Emeric Deutsch, Apr 01 2004: (Start)
a(n) = 4^(n-1) - a(n-1).
G.f.: x/(1-3*x - 4*x^2). (End)
a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*3^(n-2k)*4^k. - Paul Barry, Jul 29 2004
a(n) = 4*a(n-1) - (-1)^n, n > 0, a(0)=0. - Paul Barry, Aug 25 2004
a(n) = Sum_{k=0..n} A155161(n,k)*2^(n-k), n >= 1. - Philippe Deléham, Jan 27 2009
a(n) = round(4^n/5). - Mircea Merca, Dec 28 2010
The logarithmic generating function 1/5*log((1+x)/(1-4*x)) = x + 3*x^2/2 + 13*x^3/3 + 51*x^4/4 + ... has compositional inverse 5/(4+exp(-5*x)) - 1, the e.g.f. for a signed version of A213127. - Peter Bala, Jun 24 2012
a(n) = (-1)^(n-1)*Sum_{k=0..n-1} A135278(n-1,k)*(-5)^k = (4^n - (-1)^n)/5 = (-1)^(n-1)*Sum_{k=0..n-1} (-4)^k. Equals (-1)^(n-1)*Phi(n,-4), where Phi is the cyclotomic polynomial when n is an odd prime. (For n > 0.) - Tom Copeland, Apr 14 2014
a(n+1) = 2^(2*n) - a(n), a(0) = 0. - Ben Paul Thurston, Dec 25 2015
a(n) = A247281(n)/5. - Altug Alkan, Jan 08 2016
From Kengbo Lu, Jul 27 2020: (Start)
a(n) = 3*Sum_{k=0..n-1} a(k) + 1 if n odd; a(n) = 3*Sum_{k=0..n-1} a(k) if n even.
a(n) = A030195(n) + Sum_{k=0..n-2} a(k)*A030195(n-k-1).
a(n) = A085449(n) + Sum_{k=0..n-1} a(k)*A085449(n-k).
a(n) = F(n) + 2*Sum_{k=0..n-1} a(k)*F(n-k) + 3*Sum_{k=0..n-2} a(k)*F(n-k-1), where F(n) denotes the Fibonacci numbers.
a(n) = F(n) + Sum_{k=0..n-1} a(k)*(L(n-k) + F(n-k+1)), where F(n) denotes the Fibonacci numbers and L(n) denotes the Lucas numbers.
a(n) = 3^(n-1) + 4*Sum_{k=0..n-2} 3^(n-k-2)*a(k).
a(m+n) = a(m)*a(n+1) + 4*a(m-1)*a(n).
a(2*n) = Sum_{i>=0, j>=0} binomial(n-j-1,i)*binomial(n-i-1,j)*3^(2n-2i-2j-1)*4^(i+j). (End)
EXAMPLE
G.f. = x + 3*x^2 + 13*x^3 + 51*x^4 + 205*x^5 + 819*x^6 + 3277*x^7 + 13107*x^8 + ...
MAPLE
seq(round(4^n/5), n=0..25) # Mircea Merca, Dec 28 2010
MATHEMATICA
k=0; lst={k}; Do[k=4^n-k; AppendTo[lst, k], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
LinearRecurrence[{3, 4}, {0, 1}, 30] (* Harvey P. Dale, Jun 26 2012 *)
CoefficientList[Series[x/((1 - 4 x) (1 + x)), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *)
PROG
(Sage) [lucas_number1(n, 3, -4) for n in range(0, 24)] # Zerinvary Lajos, Apr 22 2009
(Magma) [Floor(4^n/5-(-1)^n/5): n in [0..30]]; // Vincenzo Librandi, Jun 24 2011
(PARI) a(n) = 4^n/5-(-1)^n/5; \\ Altug Alkan, Jan 08 2016
(PARI) first(n) = Vec(x/(1 - 3*x - 4*x^2) + O(x^n), -n) \\ Iain Fox, Dec 30 2017
(Python)
def A015521(n): return ((1<<(n<<1))|1)//5 # Chai Wah Wu, Jun 28 2023
KEYWORD
nonn,easy
STATUS
approved

Search completed in 0.094 seconds