Academia.eduAcademia.edu

Global Dynamic Harmony Search algorithm: GDHS

2014

This paper presents a new modification of Harmony Search (HS) algorithm to improve its accuracy and convergence speed and eliminates setting parameters that have to be defined before optimization process and it is difficult to predict fixed values for all kinds of problems. The proposed algorithm is named Global Dynamic Harmony Search (GDHS). In this modification, all the key parameters are changed to dynamic mode and there is no need to predefine any parameters; also the domain is changed to dynamic mode to help a faster convergence. Two experiments, with large sets of benchmark functions, are executed to compare the proposed algorithms with other ones. In the first experiment, 15 benchmark problems are used to compare the proposed algorithm with other similar algorithms based on the Harmony Search method and in the second experiment, 47 benchmark problems are used to compare the performance of the GDHS with other algorithms from different families, including: GA, PSO, DE and ABC algorithms. Results showed that the proposed algorithm outperforms the other algorithms, considering the point that the GDHS does not require any predefined parameter.

Applied Mathematics and Computation 228 (2014) 195–219 Contents lists available at ScienceDirect Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc Global Dynamic Harmony Search algorithm: GDHS Mohammad Khalili a,⇑, Riyaz Kharrat a, Karim Salahshoor a, Morteza Haghighat Sefat b a b Petroleum University of Technology, POB 6198144471, Ahwaz, Iran Heriot-Watt University, Edinburgh, United Kingdom a r t i c l e i n f o Keywords: Harmony Search algorithm Dynamic Harmony Search Meta-heuristics Evolutionary algorithms Optimization a b s t r a c t This paper presents a new modification of Harmony Search (HS) algorithm to improve its accuracy and convergence speed and eliminates setting parameters that have to be defined before optimization process and it is difficult to predict fixed values for all kinds of problems. The proposed algorithm is named Global Dynamic Harmony Search (GDHS). In this modification, all the key parameters are changed to dynamic mode and there is no need to predefine any parameters; also the domain is changed to dynamic mode to help a faster convergence. Two experiments, with large sets of benchmark functions, are executed to compare the proposed algorithms with other ones. In the first experiment, 15 benchmark problems are used to compare the proposed algorithm with other similar algorithms based on the Harmony Search method and in the second experiment, 47 benchmark problems are used to compare the performance of the GDHS with other algorithms from different families, including: GA, PSO, DE and ABC algorithms. Results showed that the proposed algorithm outperforms the other algorithms, considering the point that the GDHS does not require any predefined parameter. Ó 2013 Elsevier Inc. All rights reserved. 1. Introduction It’s been a few decades that many researchers are looking for new methods to solve complex and difficult problems in a better, more accurate and faster way. Their researches led several methods in problem solving and optimization. The most recent ones are Meta-heuristic methods that conceptualize phenomena in the nature to find the best solution. In 2001, Geem et al. introduced a new meta-heuristic method named Harmony Search (HS) which is inspired by musical harmony [1]. The Harmony Search algorithm has been so far applied to various optimization problems and it has been successfully used in many fields, such as: [2–6] etc. Since the first presentation of HS, many modifications have been proposed to the HS to reinforce its accuracy and convergence speed. The main drawback of the original HS is that the parameters are set to fixed values, and it is difficult to suggest values that work well with every optimization problem. Mahdavi et al. [7] developed the original HS algorithm and proposed the Improved Harmony Search (IHS). They used dynamic values for some parameters (pitch adjustment rate and bandwidth) to overcome the HS drawbacks. Although their suggestion was constructive and improved the HS very well; their work had the drawback that needed some parameters to be set before the optimization process. Omran and Mahdavi [8] presented another modification to the HS algorithm named Global-Best Harmony Search (GHS) algorithm. Their work was just the previous version of HS algorithm, IHS, but with a difference in improvisation step. Although this variation of HS was valuable, some parameters had to be set before process. Cobos et al. [9] presented another method named ‘‘Global-Best ⇑ Corresponding author. E-mail addresses: khaliliput@gmail.com, khaliliput@yahoo.com (M. Khalili), kharrat@put.ac.ir (R. Kharrat), salahshoor@put.ac.ir (K. Salahshoor), morteza.haghighat@pet.hw.ac.uk (M.H. Sefat). 0096-3003/$ - see front matter Ó 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.amc.2013.11.058 196 M. Khalili et al. / Applied Mathematics and Computation 228 (2014) 195–219 Harmony Search using Learnable Evolution Models (GHS + LEM)’’. They used new machine learning techniques to generate new populations along with the Darwinian method, applied in evolutionary computation and based on mutation and natural selection. This method still has its own parameters in addition to HS parameters that should be set before start of process. According to these researches, Global Dynamic Harmony Search (GDHS) algorithm is proposed, which doesn’t require any predefined values. After the introduction of GDHS, the algorithm is tested by two experiments using the most important benchmark problems that are often used for testing optimization problems and the results versus other methods are shown. The other parts of this paper are as following: Section 2 introduces the algorithms HS, IHS, GHS and GHS + LEM briefly. Section 3 presents the new algorithm, GDHS. Section 4 presents the experiments and the results of the algorithm tested with benchmark functions. Finally Section 5 presents the conclusions. 2. Harmony Search 2.1. Harmony Search algorithm In 2001, Geem et al. introduced a new meta-heuristic method named ‘‘Harmony Search algorithm’’ which is inspired from musical harmony [1]. Musical performances seek a best state (fantastic harmony) determined by estimation, as the optimization algorithms seek a best state (global optimum – minimum cost or maximum benefit or efficiency) determined by objective function evaluation. Aesthetic estimation is determined by the set of the sounds played by joined instruments, just as objective function evaluation is determined by the set of the values produced by component variables; the sounds for better estimation can be improved through practice after practice, just as the values for better objective function evaluation can be improved iteration by iteration [1]. The optimization procedure of the Harmony Search algorithm consists of five steps, as follows [10]:      Step Step Step Step Step 1. 2. 3. 4. 5. Initialize the optimization problem and algorithm parameters. Initialize the harmony memory (HM). Improvise a new harmony from the HM. Update the HM. Repeat Steps 3 and 4 until the termination criterion is satisfied. Here we go through the algorithm step by step with a brief description: Step 1. Initialize the optimization problem and algorithm parameters. In each optimization problem the first step is to declare the problem itself and algorithm parameters. The optimization generally is specified as bellow: Minimize f ðxÞ while xi 2 X i ; i ¼ 1; 2; . . . ; N ð1Þ where f(x) is the objective function; x is the set of each design variable (xi); Xi is the set of the possible range of values for each design variable (continuous design variables), that is, Lxi 6 Xi 6 Uxi; and N is the number of design variables. The required parameters of the HS algorithm to solve the optimization problem (i.e., Eq. (1)) are also specified in this step: the harmony memory size (number of solution vectors in harmony memory, HMS), harmony memory considering rate (HMCR), pitch adjusting rate (PAR), and termination criterion (maximum number of searches or the number of improvisations: NI). Here, HMCR and PAR are parameters that are used to improve the solution vector and both are defined in Step 3 [10]. Step 2. Initialize the harmony memory (HM). In this step, the ‘‘harmony memory’’ (HM) matrix, shown in Eq. (2), is filled with randomly generated solution vectors and sorted by the values of the objective function, f(x) [10]. x11 x12 x13 6 x2 6 1 6 3 6 HM ¼ 6 x1 6 . 6 . 4 . x22 x23 x32 x33 .. . .. . xHMS 2 xHMS 3 2 xHMS 1  x1D  .. . x3D  x2D .. .    xHMS D jf ðx1 Þ 3 jf ðx2 Þ 7 7 7 jf ðx3 Þ 7 7: 7 .. 7 5 . ð2Þ jf ðxHMS Þ Step 3. Improvise a new harmony from the HM. In this step, a new harmony vector, X 0 ¼ ðx01 ; x02 ; . . . ; x0N Þ is generated from the HM based on memory considerations, pitch adjustments, and randomization. For instance, the value of the first design variable ðx01 Þ for the new vector can be chosen   . Values of the other design variables (x0i ) can be chosen in the same from any value in the specified HM range x11  xHMS 1 manner. Here, it is possible to choose the new value using the HMCR parameter, which varies between 0 and 1 as follows: X 0i : ( g with probability of HMCR x0i 2 fx1i ; x2i ; . . . ; xHMS i x0i 2 X i with probability of ð1  HMCRÞ ð3Þ M. Khalili et al. / Applied Mathematics and Computation 228 (2014) 195–219 197 The HMCR is the probability of choosing one value from the historic values stored in the HM, and (1  HMCR) is the probability of randomly choosing one feasible value that is not limited to those stored in the HM. A HMCR value of 1.0 is not recommended because it eliminates the possibility that the solution may be improved by the values which are not stored in the HM. This is similar to the reason why the genetic algorithm uses a mutation rate in the selection process [10]. Every component of the new harmony vector, X 0 ¼ ðx01 ; x02 ; . . . ; x0N Þ, is examined to determine whether it should be pitchadjusted. This procedure uses the PAR parameter that sets the rate of adjustment for the pitch chosen from the HM as follows [10]: Pitch adjusting rule for X 0i :  Yes with probability of PAR No with probability of ð1  PARÞ ð4Þ The Pitch adjusting process is performed only after a value is chosen from the HM. The value (1  PAR) sets the rate of doing nothing. If the pitch adjustment decision for x0i is Yes, and x0i is assumed to be xi(k), i.e., the kth element in Xi, the pitch-adjusted value of xi(k) is [10]: Fig. 1. Dynamic HMCR. Fig. 2. Dynamic PAR. 198 M. Khalili et al. / Applied Mathematics and Computation 228 (2014) 195–219 x0i ¼ x0i þ a ð5Þ where a is the value of bw  uð1; 1Þ, bw is an arbitrary distance bandwidth for the continuous design variable, and u(1,1) is a uniform distribution between 1 and 1. The HMCR and PAR parameters introduced in the Harmony Search help the algorithm to find globally and locally improved solutions, respectively [10]. Step 4. Update the HM. In this step, if the new harmony vector is better than the worst harmony in the HM in terms of the objective function value, the new harmony is included in the HM and the existing worst harmony is excluded from the HM. The HM is then sorted by the objective function values [10]. Step 5. Repeat Steps 3 and 4 until the termination criterion is satisfied. In this step, the computations are terminated when the termination criterion is satisfied; if not, Steps 3 and 4 will be repeated [10]. 2.2. Improved Harmony Search In 2007, Mahdavi et al. developed the original HS algorithm and proposed the ‘‘Improved Harmony Search (IHS)’’ algorithm which employs a novel method for generating new solution vectors that enhances accuracy and convergence rate of Harmony Search (HS) algorithm [7]. To improve the performance of the HS algorithm and eliminate the drawbacks of specifying fixed values of PAR and bw, IHS algorithm uses variables PAR and bw in improvisation step (Step 3). PAR and bw change dynamically with generation number as expressed in Eqs. (6)–(8): PARðtÞ ¼ PARmin þ PARmax  PARmin t NI ð6Þ where PAR(t) is the pitch adjusting rate for generation t, PARmin and PARmax are the minimum and maximum pitch adjusting rates, respectively; NI is the number of solution vector generations, t is the generation number and, bwðtÞ ¼ bwmax  expðc:tÞ c¼   bwmin Ln bw max NI ð7Þ ð8Þ where bw(t) is the bandwidth for generation t, bwmin and bwmax are the minimum and maximum bandwidths [7]. A major drawback of the IHS is that the user needs to specify the values for bwmin and bwmax which are difficult to guess and problem dependent [8]. 2.3. Global-Best Harmony Search In 2008, Omran and Mahdavi presented a new modification to HS algorithm named ‘‘Global-Best Harmony Search algorithm’’ [8], inspired by the concept of swarm intelligence. Unlike the basic HS algorithm, the GHS algorithm generates a new Fig. 3. An example of dynamic limit reduction for Ackley Test Function with ND = 30, Max. Improvisation = 5000 (Generated by MATLAB program). M. Khalili et al. / Applied Mathematics and Computation 228 (2014) 195–219 199 best best harmony vector x0 by making use of the best harmony vector xbest ¼ fxbest 1 ; x2 ; . . . ; xN g in the HM. The pitch adjustment rule is given as follows: x0i ¼ xbest k ð9Þ where k is a random integer between 1 and N. The performance of the GHS is investigated and compared with HS. The experiments conducted showed that the GHS generally outperformed the other approaches when applied to ten benchmark problems [11]. 2.4. GHS + LEM In 2011, Cobos et al. presented another method called: ‘‘GHS + LEM or Global-Best Harmony Search using Learnable Evolution Models’’ [9]. This method is inspired by the concept of the learnable evolution model (LEM) proposed by Michalski [12]. In LEM, machine learning techniques are used to generate new populations along with the Darwinian method, applied in evolutionary computation and based on mutation and natural selection. The method can determine which individuals in a population (or set of individuals from previous populations) are better than others in performing certain tasks. This reasoning, expressed as an inductive hypothesis, is used to generate new populations. Then, when the algorithm is run in Darwinian evolution mode, it uses random or semi-random operations for the generation of new individuals (using traditional mutation and/or recombination techniques). The LEM process can be summarized in the following steps [9]:1. for each i [1, maximum improvisation] do max = ( Upper limit- Lower limit ) bw den U HM = max(max(HM (:,1: D ))) L HM = min(min(HM (:,1: D ))) U new = U HM + bw max L new = L HM − bw max if U new ≤ upper initial limit U Dnew end_if if L new =U %Control the new limits not to exceed the original limits new ≥ lower initial limit LDnew = L new end_if New Limit = [ ] ⎛ ⎞ HMCR = 0.9 + 0.2 × iteration −1 × ⎜⎜1 − iteration −1 ⎟⎟ max.imp. −1 ⎝ max.imp. −1  ⎛ ⎞ PAR = 0.85 + 0.3 × iteration −1 × ⎜⎜1 − iteration −1 ⎟⎟ max.imp. −1 ⎝ max.imp. −1  for each i [1, N] do U(0, 1) < HMCR then /*memory consideration*/ xi' = xij ,where j~U(1, … , HMS) if U(0, 1) ≤ PAR then /*pitch adjustment*/ ( ) coef = 1 + ( HMS − j ) × ⎜⎜1 − iteration −1 ⎟⎟ max imp −1  ⎝ ⎛ ⎞ xi' = xi' ± bw × coef if xi' is not in the range of initial limits, correct it as: xi' = xi' bw × coef end_if end_if else /*random selection*/ x i' = L Dinew + rand × (U Dinew − L new Di ) end_if done done Fig. 4. Improvisation step in GDHS algorithm. 200 M. Khalili et al. / Applied Mathematics and Computation 228 (2014) 195–219 Generate a population.2. Run the machine learning mode.3. Run the Darwinian learning mode.4. Alternate between the two modes until the stop criterion is reached. Cobos et al. resulted that in HCMR P 0.9 the algorithm of GHS + LEM generally has better efficiency. Also they suggested that the harmony memory size is better to be between 5 and 10. 3. Proposed algorithm: Global Dynamic Harmony Search (GDHS) In all published modifications of the Harmony Search, authors introduced bw, PAR and HMCR as the main parameters of the algorithm and studies are focused on estimation of these parameters. In IHS a great idea was proposed, changing bw and Table 1 Setting parameters for various algorithms. Variable HS IHS GHS GHS + LEM GDHS HMS HMCR PAR PARmin PARmax Bw bwmin bwmax HLGS RCR RRU 5 0.9 0.3 N.A. N.A. 0.01 N.A. N.A. N.A. N.A. N.A. 5 0.9 N.A. 0.01 0.99 N.A. 0.0001 1/(20x (UB  LB)) N.A. N.A. N.A. 5 0.9 N.A. 0.01 0.99 N.A. N.A. N.A. N.A. N.A. N.A. 5 0.9 N.A. 0.01 0.99 N.A. N.A. N.A. [HMS/2] 0.9 0.2 5 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. Table 2 Benchmark functions used in experiment A. D: dimension, C: characteristic, U: unimodal, M: multimodal, S: separable, N: non-separable. Function name D C Global optimum Range 1. Sphere (DeJong’s first function) P 2 f ðxÞ ¼ D i¼1 xi 2. Schwefel’s problem 2.22 P QD f ðxÞ ¼ D i¼1 jxi j þ i¼1 jxi j 3. Rosenbrock P 2 2 2 f ðxÞ ¼ D1 i¼1 ½100ðxiþ1  xi Þ þ ðxi  1Þ  4. Step P 2 f ðxÞ ¼ D i¼1 ðbxi þ 0:5cÞ 5. Rotated hyper-ellipsoid Pi P 2 f ðxÞ ¼ D i¼1 ð j¼1 xj Þ 30 50 US f(x) = 0 @ xi = 0, i = 1, . . ., D 5:12 6 xi 6 5:12 i = 1, . . ., D 30 50 UN f(x) = 0 @ xi = 0, i = 1, . . ., D 10 6 xi 6 10 i = 1, . . ., D 30 50 UN f(x) = 0 @ xi = 1, i = 1, . . ., D 30 6 xi 6 30 i = 1, . . ., D 30 50 US f(x) = 0 @ xi = 0, i = 1, . . ., D 100 6 xi 6 100 i = 1, . . ., D 30 50 UN f(x) = 0 @ xi = 0, i = 1, . . ., D 100 6 xi 6 100 i = 1, . . ., D 30 50 MS f(x) = 418.9829D @ xi = 420.9687, i = 1, . . ., D 500 6 xi 6 500 i = 1, . . ., D 30 50 MS f(x) = 0 @ xi = 0, i = 1, . . ., D 5:12 6 xi 6 5:12 i = 1, . . ., D 30 50 MN f(x) = 0 @ xi = 0, i = 1, . . ., D 32 6 xi 6 32 i = 1, . . ., D 30 50 MN f(x) = 0 @ xi = 0, i = 1, . . ., D 600 6 xi 6 600 i = 1, . . ., D 2 MN 5 6 xi 6 5 i = 1,2 30 50 UN f(x⁄) = 1.0316285 @ x⁄ = (0.08983, 0.7126); (0.08983, 0.7126) f(x) = 0 @ xi = 0, i = 1, . . ., D 30 50 UN f(x) = 0 @ xi = 0, i = 1, . . ., D 100 6 xi 6 100i = 1, . . ., D 30 50 MN f(x) = 0 @ xi = 0, i = 1, . . ., D 100 6 xi 6 100 i = 1, . . ., D 30 50 MN f(x) = 0 @ xi = 0, i = 1, . . ., D 0:5 6 xi 6 0:5 i = 1, . . ., D 30 50 U f(x) = 0 @ xi = 0, i = 1, . . ., D 10 6 xi 6 10 i = 1, . . ., D 6. Generalized Schwefel’s problem 2.26 pffiffiffiffiffiffiffi P f ðxÞ ¼ D i¼1  xi sinð jxi jÞ 7. Rastrigin P 2 f ðxÞ ¼ D i¼1 ½xi  10 cosð2pxi Þ þ 10 8. Ackley qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi P PD 1 2 f ðxÞ ¼ 20 expð0:2 D1 D i¼1 xi Þ  expðD i¼1 cosð2pxi ÞÞ þ 20 þ e 9. Griewank 1 f ðxÞ ¼ 4000 PD 2 i¼1 xi  QD i¼1 cosðpxiffiiÞ þ 1 10. Six-Hump Camel-Back f ðxÞ ¼ 4x21  2:1x41 þ 13 x61 þ x1 x2  4x22 þ 4x42 11. Shifted rotated high conditioned elliptic (SRHCE) i1 P 6 ðD1Þ 2 xi f ðxÞ ¼ D i¼1 ð10 Þ 12. Shifted Schwefel’s problem 1.2 with noise in fitness (Schwefel’s P. 1.2 Pi 2 P with noise) f ðxÞ ¼ D i¼1 ð j¼1 xj Þ  ð1 þ 0:4  jNð0; 1ÞjÞ 13. Shifted rotated expanded Scaffer’s F6 (SRESF6) pffiffiffiffiffiffiffiffiffiffi sin2 ð x2 þy2 Þ0:5 Fðx; yÞ ¼ 0:5 þ 2 2 2 100 6 xi 6 100 i = 1, . . ., D ð1þ0:001ðx þy ÞÞ f ðxÞ ¼ Fðx1 ; x2 Þ þ Fðx2 ; x3 Þ þ    þ FðxD1 ; xD Þ þ FðxD ; x1 Þ 14. Shifted rotated weierstrass Pk max k Pk max k P k k f ðxÞ ¼ D i¼1 ð k¼0 ½a cosð2pb ðxi þ 0:5ÞÞÞ  D k¼0 ½a cosð2pb  0:5Þ where: a ¼ 0:5; b ¼ 3; k max ¼ 20 15. Sum of different power P ðiþ1Þ f ðxÞ ¼ D i¼1 jxi j 201 M. Khalili et al. / Applied Mathematics and Computation 228 (2014) 195–219 PAR with respect to the generation number. The parameter of PAR increases linearly with generation number (although some paper otherwise claim with numerical simulation results [13]), while bw decreases exponentially. Given this change in the parameters, IHS does improve the performance of HS, since it finds better solutions both globally and locally. Here a modified version of HS algorithm named ‘‘Global Dynamic Harmony Search, GDHS’’ is proposed, which uses dynamic formulas for bw, PAR and HMCR. Another change to the algorithm is changing the domain, dynamically. The idea of decreasing or increasing the parameters, led us to a formula that is both decreasing and increasing during optimization to have effects of both ideas. The suggested formulas are: HMCR ¼ 0:9 þ 0:2  ffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  iteration  1 iteration  1  1 max :imp:  1 max :imp:  1 ð10Þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi  iteration  1 iteration  1 PAR ¼ 0:85 þ 0:3   1 max :imp:  1 max :imp:  1 ð11Þ At initial iterations, a low consideration rate makes the algorithm to generate more new solutions rather than choosing from harmony memory; this provides more investigation. Meanwhile it’s better to have lower values of PAR to have both chances of adjustment and repetition. At the same time the domain is restricted to bound the new generated numbers and have a faster convergence. Table 3 Results of the experiment A. Mean: mean of the best values, StdDev: standard deviation of the best values, SEM: Standard error of means (D = 30, NI = 50,000). Function Sphere Schwefel’s problem 2.22 Rosenbrock Step Rotated hyper-ellipsoid Generalized Schwefel’s P. 2.26 Rastrigin Ackley Griewank Six-Hump Camel-Back SRHCE Schwefel’s P. 1.2 with noise SRESF6 Shifted rotated weierstrass Sum of different power Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM HS IHS GHS GHS + LEM This study 0.000684005 9.67781E05 9.67781E06 0.143656975 0.047911784 0.004791178 312.2431152 486.5124844 48.65124844 11.56 4.608555943 0.460855594 4200.19364 1319.27706 131.927706 12545.01282 9.274118296 0.9274118296 1.266797341 1.023021844 0.102302184 0.981392208 0.485630315 0.048563032 1.085396028 0.035098647 0.003509865 1.031600318 3.48248E05 3.48248E06 2641376.45 2123.26009 212.326009 10734.2988 4207.32949 420.732949 1.96830452 0.58544715 0.05854472 4.6535775 0.38824192 0.03882419 8.0773E06 7.3632E06 7.3632E07 0.017838978 0.00710319 0.000710312 0.997096357 0.200329207 0.020032921 423.9427774 330.6943507 33.06943507 11.22 3.945538332 0.394553833 4444.37734 1338.22348 133.822348 12540.34846 10.54344883 1.054344883 2.722732645 1.130249802 0.113024980 1.584674315 0.331393069 0.033139307 1.087082117 0.031926489 0.003192649 1.031628428 5.53445E09 5.53445E10 2736608.87 84608.4261 8460.84261 10822.5744 3978.9036 397.89036 2.48652905 0.52748454 0.05274845 1.96625309 0.4172199 0.0417220 0.00104216 0.00258109 0.00025811 4.0457E05 7.29366E05 7.29366E06 0.040860755 0.037067055 0.003706706 72.47196696 103.3253058 10.33253058 0 0 0 6636.76182 7763.48957 776.348957 12569.46257 0.03971048 0.00397105 0.009457309 0.014012005 0.001401200 0.024746761 0.026603311 0.002660331 0.091022469 0.192952247 0.019295225 1.031568182 8.34751E05 8.34751E06 2639715.92 2365.63557 236.563557 9606.13828 9516.94576 951.694576 3.20171518 1.57984035 0.15798404 0.34992759 0.24911012 0.02491101 6.6663E05 0.00014128 0.00001413 2.09647E10 3.60168E10 3.60168E11 5.70121E05 4.49754E05 4.49754E06 15.77537882 22.43722786 2.243722786 0 0 0 162.758505 294.309443 29.4309443 12569.48662 3.40336E11 3.40336E12 3.81653E08 6.06791E08 6.06791E09 5.83147E06 4.86194E06 4.86194E07 2.1722E11 4.5967E11 4.5967E12 1.031628452 1.45999E09 1.45999E10 2638638.74 0.00134496 0.00013450 2900.82884 3964.44543 396.444543 0.71929327 0.62934122 0.06293412 0.27805826 0.03101279 0.00310128 3.5302E11 7.426E11 7.426E12 0 0 0 0 0 0 38.155578 28.662165 2.8662165 0 0 0 0.2973795 0.2876311 0.0287631 12569.48662 1.0802E011 1.0802E012 0 0 0 0 0 0 0.00372009 0.00596625 0.000596625 1.031628452 9.2595E009 9.2595E010 0 0 0 2964.182291 1612.564548 161.2564548 0.96139267 0.41747234 0.04174723 0 0 0 0 0 0 202 M. Khalili et al. / Applied Mathematics and Computation 228 (2014) 195–219 At the middle of the iterations, we will have larger values of HMCR up to 1 to pick values from harmony memory with more chance and also PAR goes up to 1 to enforce the selected values to have adjustments. Still domain is getting more bounded. At final iterations, HMCR is decreased. Reduction of HMCR helps to escape from local optima by generating new values other than values in the harmony memory. Since the domain has been bounded; the reduction of HMCR does not affect the accuracy and convergence of the algorithm. The Figs. 1 and 2 show a schematic of HMCR and PAR in dynamic mode. Domain is changing dynamically as follows: U HM ¼ maximum value of the variables in the harmony memory ð12Þ LHM ¼ minimum value of the variables in the harmony memory ð13Þ U new ¼ U HM þ bwmax ð14Þ Lnew ¼ LHM  bwmax ð15Þ New limit ¼ ½Lnew ; U new ; ð16Þ Table 4 Results of the experiment A. Mean: mean of the best values, StdDev: standard deviation of the best values, SEM: Standard error of means (D = 50, NI = 50,000). Function Sphere Schwefel’s problem 2.22 Rosenbrock Step Rotated hyper-ellipsoid Generalized Schwefel’s P. 2.26 Rastrigin Ackley Griewank Six-Hump Camel-Back SRHCE Schwefel’s P. 1.2 with noise SRESF6 Shifted rotated weierstrass Sum of different power Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM HS IHS GHS GHS + LEM This study 1.231713634 0.287760963 0.028776096 9.594968369 1.080214642 0.108021464 28119.05942 10535.26342 1053.526342 513.92 101.4288505 10.14288505 29509.5846 5773.08368 577.308368 20065.84929 183.3728874 18.33728874 35.35722669 4.955395824 0.495539582 5.259876609 0.384154298 0.038415430 5.701261605 1.080435525 0.108043552 1.031600318 3.48248E05 3.48248E06 4849016.47 321380.054 32138.0054 44173.8891 9303.92094 930.392094 7.53326153 0.91845325 0.09184532 13.1610808 1.03368193 0.10336819 11.8118627 14.739244 1.4739244 1.36689254 0.308892735 0.030889273 10.03102019 1.361876185 0.136187618 27416.72832 9607.338888 960.7338888 535.07 112.1655752 11.21655752 28901.7791 5338.41442 533.841442 20055.73906 187.2603852 18.72603852 45.97323267 5.414365656 0.541436566 5.382419569 0.38808497 0.03880849 5.887341775 1.108359613 0.110835961 1.031628428 5.53445E09 5.53445E10 5112265.38 477042.762 47704.2762 44978.9758 9664.43851 966.443851 7.56787837 0.73623798 0.07362379 12.7139825 1.16549521 0.11654952 9.55819903 36.363862 3.6363862 0.005550663 0.00776301 0.00077630 0.411417885 0.397066313 0.039706631 357.7255365 726.1644056 72.61644056 0.09 0.637149587 0.063714959 66423.751 22022.3762 2202.23762 20944.1766 8.953405915 0.895340591 0.407654111 0.622184354 0.062218435 0.324365569 0.444545366 0.044454536 0.700857354 0.368310151 0.036831015 1.031568182 8.34751E05 8.34751E06 4323424.84 382439.522 38243.9522 77200.6744 19279.3161 1927.93161 8.2040702 4.45743971 0.44574397 1.73347675 1.02389123 0.10238912 0.03464226 0.07923361 0.00792336 2.58528E08 5.5786E08 5.5786E09 0.000441435 0.000376589 0.000037659 39.49848422 59.9930843 5.99930843 0 0 0 9698.04483 7340.12668 734.012668 20949.14436 3.8441E09 3.8441E10 4.13742E06 8.94894E06 8.94894E07 6.09717E05 5.45021E05 5.45021E06 5.35254E09 1.198E08 1.198E09 1.031628452 1.45999E09 1.45999E10 4070199.91 0.00843488 0.00084348 23470.0405 11482.3296 1148.23296 1.27372272 1.20134079 0.12013408 1.25572551 0.1074032 0.01074032 7.1917E11 1.0876E10 1.0876E11 0 0 0 0 0 0 67.114686 42.538151 4.2538151 0 0 0 357.741914 117.986611 11.7986611 20949.14436 3.7323E11 3.7323E12 0 0 0 0 0 0 0.00221714 0.00490677 0.00049067 1.031628452 9.5882E09 9.5882E10 1.5897E08 5.7768E08 5.7768E09 25780.1068 6421.59280 642.159280 2.4822881 0.7184870 0.0718487 0 0 0 3.8403E12 1.1000E11 1.1000E12 203 M. Khalili et al. / Applied Mathematics and Computation 228 (2014) 195–219 Table 5 Results of the experiment A. Mean: mean of the best values, StdDev: standard deviation of the best values, SEM: Standard error of means (D = 30, NI = 5000). Function Sphere Schwefel’s problem 2.22 Rosenbrock Step Rotated hyper-ellipsoid Generalized Schwefel’s P. 2.26 Rastrigin Ackley Griewank Six-Hump Camel-Back SRHCE Schwefel’s P. 1.2 with noise SRESF6 Shifted rotated weierstrass Sum of different power Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM HS IHS GHS GHS + LEM This study 1.391113338 0.442516349 0.044251635 7.343708198 1.298620467 0.129862047 44801.42361 27087.38846 2708.738846 577.17 178.0053373 17.80053373 18648.2804 4664.11977 466.411977 11723.5473 194.1725169 19.41725169 29.46075697 5.461732931 0.546173293 6.335464888 0.620693868 0.062069387 6.277931588 1.494900647 0.149490065 1.03155243 5.65151E05 5.65151E06 4949527.45 1549998.56 154999.856 25859.5942 6127.04081 612.704081 5.40555247 0.74702013 0.07470201 8.1876236 1.08444438 0.10844444 56.7816376 84.9067592 8.49067592 1.492336778 0.429375922 0.042937592 7.942415139 1.376467735 0.137646774 44335.30705 25827.36583 2582.736583 599.34 181.6569761 18.16569761 19114.2613 5576.63382 557.663382 11734.68475 182.3846445 18.23846445 36.89200558 6.233664508 0.623366451 6.480145971 0.686288345 0.068628834 6.370436585 1.816294084 0.181629408 1.031628431 7.41828E09 7.41828E10 5272015.41 2003255.08 200325.508 25706.8318 6656.33665 665.633665 5.66821959 0.57290456 0.05729046 9.14968576 1.03659385 0.10365938 70.2377894 135.452682 13.5452682 0.008490508 0.015014868 0.001501487 0.38849092 0.392227894 0.039222789 365.8780006 988.1136926 98.81136926 3.25 8.62738768 0.86273877 22845.7019 12812.2556 1281.22556 12561.42156 16.70991705 1.670991705 0.881408659 1.594135534 0.159413553 0.535233079 0.701961543 0.070196154 0.795212512 0.350711873 0.035071187 1.026283458 0.008075092 0.000807509 3257133.71 1000322.75 100032.275 33126.0056 14920.4074 1492.04074 3.73505659 2.6546381 0.2654638 1.62251403 1.09541355 0.10954135 0.04011324 0.06083117 0.00608312 5.93279E08 9.80204E08 9.80204E09 0.000681506 0.000587781 0.000058778 35.91286497 68.65861969 6.865861969 0 0 0 9742.75094 5923.66993 592.366993 12569.4597 0.248116333 0.024811633 1.17383E05 1.89959E05 1.89959E06 0.000125684 0.000103427 0.000010343 0.006467333 0.054165186 0.005416519 1.030628257 0.004327667 0.000432767 2638638.87 0.17113924 0.01711392 16884.5567 8512.95715 851.295715 1.38260315 1.1580235 0.1158024 0.9166651 0.08870444 0.00887044 8.4062E09 2.4547E08 2.4547E09 2.0616E12 2.6746E12 2.6746E13 5.5844E06 8.0947E06 8.0947E07 127.51887 219.55947 21.955947 0 0 0 6885.2165 1995.0210 199.50210 12221.5651 204.20577 20.420577 11.569186 3.4237195 0.3423720 1.2069E05 1.2343E05 1.2343E06 0.0069551 0.0073817 0.0007382 1.031628431 9.6625E09 9.6625E10 677.9420 737.0216 73.70216 23116.859 6545.2417 654.52417 4.6748659 0.9918541 0.0991854 0.0372841 0.0335924 0.0033592 4.1984E05 1.1419E04 1.1419E05 Table 6 Significance test for GDHS and HS (D = 30, NI = 50000). t: t-value of student t-test, SED: standard error of difference, p: p-value calculated for t-value, R: Rank of p-value, I.R.: inverse rank of p-value, Sign: significance. No Function t SED p R I.R. NEW a Sign. 11 9 14 1 5 2 6 4 8 12 13 7 15 10 3 SRHCE Griewank Shifted rotated weierstrass Sphere Rotated hyper-ellipsoid Schwefel’s problem 2.22 Generalized Schwefel’s P. 2.26 Step Ackley Schwefel’s P. 1.2 with noise SRESF6 Rastrigin Sum of different power Six-Hump Camel-Back Rosenbrock 12440.193 303.8234 119.8628 70.6777 31.8348 29.9836 26.3894 25.0838 20.2086 17.2448 14.0034 12.3829 10.9698 8.0787 5.6240 212.33 0.0036 0.0388 0 131.9277 0.0048 0.9274 0.4609 0.0486 450.5773 0.0719 0.1023 0 0 48.74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0.003333 0.003571 0.003846 0.004167 0.004545 0.005000 0.005556 0.006250 0.007143 0.008333 0.010000 0.012500 0.016667 0.025000 0.050000 GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS 204 M. Khalili et al. / Applied Mathematics and Computation 228 (2014) 195–219 where Unew and Lnew are the new upper and lower bounds of the domain, respectively. Maximum bandwidth is defined as: bwmax ¼ Dðupper and lower limitsÞ bwden ð17Þ Table 7 Significance test for GDHS and IHS (D = 30, NI = 50000). t: t-value of student t-test, SED: standard error of difference, p: p-value calculated for t-value, R: Rank of p-value, I.R.: inverse rank of p-value, Sign: significance. No Function t SED p R I.R. NEW a Sign. 9 11 2 8 14 5 4 6 1 7 13 10 12 3 15 Griewank SRHCE Schwefel’s problem 2.22 Ackley Shifted rotated weierstrass Rotated hyper-ellipsoid Step Generalized Schwefel’s P. 2.26 Sphere Rastrigin SRESF6 Six-Hump Camel-Back Schwefel’s P. 1.2 with noise Rosenbrock Sum of different power 333.5559 323.4440 49.7729 47.8186 47.1275 33.2088 28.4372 27.6363 25.1140 24.0897 22.6719 22.2481 18.3040 11.6224 4.0377 0.0032 8460.8426 0.0200 0.0331 0.0417 133.8224 0.3946 1.0543 0.0007 0.1130 0.0673 0 429.3255 33.1934 0.0003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0.003333 0.003571 0.003846 0.004167 0.004545 0.005000 0.005556 0.006250 0.007143 0.008333 0.010000 0.012500 0.016667 0.025000 0.050000 GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS Table 8 Significance test for GDHS and GHS (D = 30, NI = 50000). t: t-value of student t-test, SED: standard error of difference, p: p-value calculated for t-value, R: Rank of p-value, I.R.: inverse rank of p-value, Sign: significance. No Function t SED p R I.R. NEW a Sign. 11 14 13 2 8 5 10 12 7 6 1 15 9 3 4 SRHCE Shifted rotated weierstrass SRESF6 Schwefel’s problem 2.22 Ackley Rotated hyper-ellipsoid Six-Hump Camel-Back Schwefel’s P. 1.2 with noise Rastrigin Generalized Schwefel’s P. 2.26 Sphere Sum of different power Griewank Rosenbrock Step 11158.5908 14.0471 13.7101 11.0235 9.3021 8.5483 7.2201 6.8810 6.7494 6.0563 5.5469 4.7185 4.5224 3.2003 Inf 236.56356 0.024911 0.1634068 0.0037 0.0026603 776.3490 0 965.25966 0.0014 0.0040 0 0 0.0193 10.7227 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0.003333 0.003571 0.003846 0.004167 0.004545 0.005000 0.005556 0.006250 0.007143 0.008333 0.010000 0.012500 0.016667 0.025000 0.050000 GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS – Table 9 Significance test for GDHS and GHS + LEM (D = 30, NI = 50000). t: t-value of student t-test, SED: standard error of difference, p: p-value calculated for t-value, R: Rank of p-value, I.R.: inverse rank of p-value, Sign: significance. No. Function t SED p R I.R. NEW a Sign. 11 14 2 8 7 9 3 1 5 15 13 12 6 10 4 SRHCE Shifted rotated weierstrass Schwefel’s problem 2.22 Ackley Rastrigin Griewank Rosenbrock Sphere Rotated hyper-ellipsoid Sum of different power SRESF6 Schwefel’s P. 1.2 with noise Generalized Schwefel’s P. 2.26 Six-Hump Camel-Back Step 1.962E+10 89.6592 12.6763 11.9941 6.2897 6.2352 6.1484 5.8208 5.5201 4.7538 3.2057 0.1480 0 0 Inf 0.0001 0.0031 0 0 0 0.0006 3.6400 0 29.4310 0 0.0755 427.9859 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0.003333 0.003571 0.003846 0.004167 0.004545 0.005000 0.005556 0.006250 0.007143 0.008333 0.010000 0.012500 0.016667 0.025000 0.050000 GDHS GDHS GDHS GDHS GDHS GHS + LEM GHS + LEM GDHS GDHS GDHS GHS + LEM – – – – 205 M. Khalili et al. / Applied Mathematics and Computation 228 (2014) 195–219 where bwden is the denominator coefficient of the bandwidth and it is a fixed value throughout the optimization process:    bwden ¼ 20  abs 1 þ log10 U initial  Linitial ð18Þ Table 10 Significance test for GDHS and HS (D = 50, NI = 50000). t: t-value of student t-test, SED: standard error of difference, p: p-value calculated for t-value, R: Rank of p-value, I.R.: inverse rank of p-value, Sign: significance. No Function t SED p R I.R. NEW a Sign. 11 8 14 2 7 9 4 5 6 13 1 3 12 10 15 SRHCE Ackley Shifted rotated weierstrass Schwefel’s problem 2.22 Rastrigin Griewank Step Rotated hyper-ellipsoid Generalized Schwefel’s P. 2.26 SRESF6 Sphere Rosenbrock Schwefel’s P. 1.2 with noise Six-Hump Camel-Back Sum of different power 150.8811 136.9209 127.3223 88.8246 71.3510 52.7471 50.6680 50.4856 48.1693 43.3152 42.8034 26.6265 16.2707 8.0787 8.0139 32138.01 0.0384 0.1034 0.1080 0.4955 0.1080 10.1429 577.4289 18.3373 0.1166 0.0288 1053.53 1130.4857 0 1.4739 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0.003333 0.003571 0.003846 0.004167 0.004545 0.005000 0.005556 0.006250 0.007143 0.008333 0.010000 0.012500 0.016667 0.025000 0.050000 GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS Table 11 Significance test for GDHS and IHS (D = 50, NI = 50000). t: t-value of student t-test, SED: standard error of difference, p: p-value calculated for t-value, R: Rank of p-value, I.R.: inverse rank of p-value, Sign: significance. No Function t SED p R I.R. NEW a Sign. 8 14 11 7 2 5 9 13 6 4 1 3 10 12 15 Ackley Shifted rotated weierstrass SRHCE Rastrigin Schwefel’s problem 2.22 Rotated hyper-ellipsoid Griewank SRESF6 Generalized Schwefel’s P. 2.26 Step Sphere Rosenbrock Six-Hump Camel-Back Schwefel’s P. 1.2 with noise Sum of different power 138.6918 109.0865 107.1658 84.9097 73.6559 53.4561 53.0971 49.4360 47.7093 47.7036 44.2514 28.4671 21.6784 16.5459 2.6285 0.0388 0.1165 47704.2762 0.5414 0.1362 533.9718 0.1108 0.1029 18.7260 11.2166 0.0309 960.7433 0 1160.3371 3.6364 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0.003333 0.003571 0.003846 0.004167 0.004545 0.005000 0.005556 0.006250 0.007143 0.008333 0.010000 0.012500 0.016667 0.025000 0.050000 GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS Table 12 Significance test for GDHS and GHS (D = 50, NI = 50000). t: t-value of student t-test, SED: standard error of difference, p: p-value calculated for t-value, R: Rank of p-value, I.R.: inverse rank of p-value, Sign: significance. No Function t SED p R I.R. NEW a Sign. 11 5 12 9 14 13 2 8 10 1 7 6 15 3 4 SRHCE Rotated hyper-ellipsoid Schwefel’s P. 1.2 with noise Griewank Shifted rotated weierstrass SRESF6 Schwefel’s problem 2.22 Ackley Six-Hump Camel-Back Sphere Rastrigin Generalized Schwefel’s P. 2.26 Sum of different power Rosenbrock Step 113.0486 29.9991 25.3046 18.9671 16.9303 12.6729 10.3614 7.2966 7.2201 7.1501 6.5520 5.5485 4.3722 3.9951 1.4125 38243.952 2202.2692 2032.0652 0.0368 0.1024 0.4515 0.0397 0.0445 0 0.0008 0.0622 0.8953 0.0079 72.7409 0.0637 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0.003333 0.003571 0.003846 0.004167 0.004545 0.005000 0.005556 0.006250 0.007143 0.008333 0.010000 0.012500 0.016667 0.025000 0.050000 GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS 206 M. Khalili et al. / Applied Mathematics and Computation 228 (2014) 195–219 Uinitial and Linitial are the problem’s initial upper and lower limits, respectively. An example of limit reduction is shown in Fig. 3. Minimum bandwidth is set as: bwmin ¼ 0:001  bwmax ð19Þ Table 13 Significance test for GDHS and GHS + LEM (D = 50, NI = 50000). t: t-value of student t-test, SED: standard error of difference, p: p-value calculated for t-value, R: Rank of p-value, I.R.: inverse rank of p-value, Sign: significance. No Function t SED p R I.R. NEW a Sign. 11 14 5 2 8 13 15 1 7 9 3 12 6 10 4 SRHCE Shifted rotated weierstrass Rotated hyper-ellipsoid Schwefel’s problem 2.22 Ackley SRESF6 Sum of different power Sphere Rastrigin Griewank Rosenbrock Schwefel’s P. 1.2 with noise Generalized Schwefel’s P. 2.26 Six-Hump Camel-Back Step 4.825E+09 116.9170 12.7233 11.7219 11.1870 8.6338 6.2276 4.6343 4.6234 4.5185 3.7551 1.7559 0 0 Inf 0.0008 0.0107 734.1075 0 0 0.1400 0 0 0 0.0005 7.3544 1315.6016 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0.003333 0.003571 0.003846 0.004167 0.004545 0.005000 0.005556 0.006250 0.007143 0.008333 0.010000 0.012500 0.016667 0.025000 0.050000 GDHS GDHS GDHS GDHS GDHS GHS + LEM GDHS GDHS GDHS GHS + LEM GHS + LEM GHS + LEM – – – Table 14 Significance test for GDHS and HS (D = 30, NI = 5000). t: t-value of student t-test, SED: standard error of difference, p: p-value calculated for t-value, R: Rank of pvalue, I.R.: inverse rank of p-value, Sign: significance. No Function t SED p R I.R. NEW a Sign. 8 14 2 9 4 11 1 7 5 6 3 10 15 13 12 Ackley Shifted rotated weierstrass Schwefel’s problem 2.22 Griewank Step SRHCE Sphere Rastrigin Rotated hyper-ellipsoid Generalized Schwefel’s P. 2.26 Rosenbrock Six-Hump Camel-Back Sum of different power SRESF6 Schwefel’s P. 1.2 with noise 102.0705 75.1208 56.5500 41.9486 32.4243 31.9281 31.4364 27.7556 23.1881 17.6737 16.4920 13.4479 6.6875 5.8846 3.0592 0.0621 0.1085 0.1299 0.1495 17.8005 154999.87 0.0442 0.6446 507.2881 28.1785 2708.83 0.0000 8.4907 0.1242 896.5535 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0.003333 0.003571 0.003846 0.004167 0.004545 0.005000 0.005556 0.006250 0.007143 0.008333 0.010000 0.012500 0.016667 0.025000 0.050000 GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS Table 15 Significance test for GDHS and IHS (D = 30, NI = 5000). t: t-value of student t-test, SED: standard error of difference, p: p-value calculated for t-value, R: Rank of p-value, I.R.: inverse rank of p-value, Sign: significance. No Function t SED p R I.R. NEW a Sign. 8 14 2 7 9 1 4 11 5 6 3 13 15 12 10 Ackley Shifted rotated weierstrass Schwefel’s problem 2.22 Rastrigin Griewank Sphere Step SRHCE Rotated hyper-ellipsoid Generalized Schwefel’s P. 2.26 Rosenbrock SRESF6 Sum of different power Schwefel’s P. 1.2 with noise Six-Hump Camel-Back 94.4229 87.861 57.7014 35.6058 35.0352 34.7559 32.993 26.3139 20.6476 17.7826 17.1160 8.6724 5.1854 2.7744 0 0.0686 0.1037 0.1376 0.7112 0.1816 0.0429 18.1657 200325.52 592.2749 27.3796 2582.8299 0.1145 13.5453 933.5256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0.003333 0.003571 0.003846 0.004167 0.004545 0.005000 0.005556 0.006250 0.007143 0.008333 0.010000 0.012500 0.016667 0.025000 0.050000 GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS – 207 M. Khalili et al. / Applied Mathematics and Computation 228 (2014) 195–219 Table 16 Significance test for GDHS and GHS (D = 30, NI = 5000). t: t-value of student t-test, SED: standard error of difference, p: p-value calculated for t-value, R: Rank of p-value, I.R.: inverse rank of p-value, Sign: significance. No Function t SED p R I.R. NEW a Sign. 11 7 9 6 14 5 2 8 10 15 12 1 4 13 3 SRHCE Rastrigin Griewank Generalized Schwefel’s P. 2.26 Shifted rotated weierstrass Rotated hyper-ellipsoid Schwefel’s problem 2.22 Ackley Six-Hump Camel-Back Sum of different power Schwefel’s P. 1.2 with noise Sphere Step SRESF6 Rosenbrock 32.554 28.2996 22.4709 16.5874 14.4647 12.3089 9.9046 7.6246 6.6191 6.5873 6.1433 5.6547 3.7671 3.3163 2.3548 100032.3 0.3777 0.0351 20.4888 0.1096 1296.6650 0.0392 0.0702 0.0008 0.0061 1629.2905 0.0015 0.8627 0.2834 101.2213 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0.003333 0.003571 0.003846 0.004167 0.004545 0.005000 0.005556 0.006250 0.007143 0.008333 0.010000 0.012500 0.016667 0.025000 0.050000 GDHS GHS GDHS GHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GHS GDHS Table 17 Significance test for GDHS and GHS + LEM (D = 30, NI = 5000). t: t-value of student t-test, SED: standard error of difference, p: p-value calculated for t-value, R: Rank of p-value, I.R.: inverse rank of p-value, Sign: significance. No Function t SED p R I.R. NEW a Sign. 11 14 7 13 6 2 8 1 12 5 3 15 10 9 4 SRHCE Shifted rotated weierstrass Rastrigin SRESF6 Generalized Schwefel’s P. 2.26 Schwefel’s problem 2.22 Ackley Sphere Schwefel’s P. 1.2 with noise Rotated hyper-ellipsoid Rosenbrock Sum of different power Six-Hump Camel-Back Griewank Step 35792.178 92.7107 33.7912 21.5925 17.0365 11.4985 10.9075 6.0523 5.8038 4.5717 3.9821 3.676 2.3111 0.0891 Inf 73.7022 0.0095 0.3424 0.1525 20.4206 0.0001 0 0 1073.8279 625.0598 23.0044 0 0.0004 0.0054 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0.003333 0.003571 0.003846 0.004167 0.004545 0.005000 0.005556 0.006250 0.007143 0.008333 0.010000 0.012500 0.016667 0.025000 0.050000 GDHS GDHS GHS + LEM GHS + LEM GHS + LEM GDHS GDHS GDHS GHS + LEM GDHS GHS + LEM GHS + LEM GDHS – – Table 18 Runtime of each test function for experiment A, with GDHS algorithm (sec. per run). No. Function D = 30, NI = 50000 D = 50, NI = 50000 D = 30, NI = 5000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Sphere Schwefel’s problem 2.22 Rosenbrock Step Rotated hyper-ellipsoid Generalized Schwefel’s P. 2.26 Rastrigin Ackley Griewank Six-Hump Camel-Back SRHCE Schwefel’s P. 1.2 with noise SRESF6 Shifted rotated weierstrass Sum of different power 2.780 2.790 2.797 2.782 3.441 3.095 2.978 3.016 3.093 3.037 (D = 2) 3.057 3.522 3.133 24.492 3.270 3.247 3.242 3.251 3.251 4.397 3.628 3.338 3.500 3.605 3.037 (D = 2) 3.699 4.402 3.683 37.891 3.921 0.281 0.289 0.287 0.288 0.350 0.321 0.297 0.318 0.327 0.313 (D = 2) 0.316 0.345 0.329 2.393 0.334 System: windows 7 ultimate. CPU: Intel Ò Core™ 2 Duo, 2.66–2.67 GHz. RAM: 4 G. Language: Matlab 7.12.0.635. Algorithm: Global Dynamic Harmony Search (GDHS). Harmony memory size (HMS) = 5. D: dimension, NI: number of improvisations. 208 M. Khalili et al. / Applied Mathematics and Computation 228 (2014) 195–219 100% 90% 80% 70% 60% 50% 40% Others 30% GDHS 20% 10% 0% Fig. 5. Success rate of GDHS versus other algorithms in experiment A (D = 30, NI = 50,000). 100% 90% 80% 70% 60% 50% 40% Others 30% GDHS 20% 10% 0% Fig. 6. Success rate of GDHS versus other algorithms in experiment A (D = 50, NI = 50,000). 100% 90% 80% 70% 60% 50% 40% Others 30% GDHS 20% 10% 0% Fig. 7. Success rate of GDHS versus other algorithms in experiment A (D = 30, NI = 5000). 209 M. Khalili et al. / Applied Mathematics and Computation 228 (2014) 195–219 Table 19 Benchmark functions used in experiment B. D: dimension, C: characteristic, U: unimodal, M: multimodal, S: separable, N: non-separable. No. Range 1 [5.12, 5.12] D C 5 US Function Stepint 2 [100, 100] 30 US Step 3 [100, 100] 30 US Sphere 4 [10, 10] 30 US SumSquares 5 [1.28, 1.28] 30 US Quartic 6 [4.5, 4.5] 2 UN Beale 7 [100, 100] 2 UN Easom 8 [10, 10] 2 UN Matyas 9 [10, 10] 4 UN Colville Formulation P f ðxÞ ¼ 30 þ 5i¼1 bxi c PD f ðxÞ ¼ i¼1 ðbxi þ 0:5cÞ2 P 2 f ðxÞ ¼ D i¼1 xi P 2 ix f ðxÞ ¼ D i¼1 i P 4 f ðxÞ ¼ D ix i¼1 i þ random½0; 1Þ 2 f ðxÞ ¼ ð1:5  x1 þ x1 x2 Þ2 þ ð2:25  x1 þ x1 x22 Þ þ ð2:625  x1 þ x1 x32 Þ 2 2 2 f ðxÞ ¼  cosðx1 Þ cosðx2 Þ expððx1  pÞ  ðx2  pÞ Þ f ðxÞ ¼ 0:26ðx21 þ x22 Þ  0:48x1 x2 2 2 f ðxÞ ¼ 100ðx21  x2 Þ þ ðx1  1Þ2 þ ðx3  1Þ2 þ 90ðx23  x4 Þ þ 10:1ððx2  1Þ2 2 10 [D2, D2] 6 UN Trid6 11 [D2, D2] 10 UN Trid10 12 [5, 10] 10 UN Zakharov 13 [4, 5] 24 UN Powell 14 [10, 10] 30 UN Schwefel 2.22 15 [100, 100] 30 UN Schwefel 1.2 16 [30, 30] 30 UN Rosenbrock 17 [10, 10] 30 UN 18 [65.536, 65.536] 19 2 MS Dixon-Price Foxholes [5, 10]  [0,15] 2 MS Branin 20 [100, 100] 2 MS Bohachevsky 1 21 [100, 100] 2 MN Bohachevsky 2 þ ðx4  1Þ Þ þ 19:8ðx2  1Þðx4  1Þ PD PD 2 i¼1 ðxi  1Þ  i¼2 xi xi1 PD P 2 f ðxÞ ¼ i¼1 ðxi  1Þ  D i¼2 xi xi1 PD PD P 2 4 2 f ðxÞ ¼ D i¼1 xi þ ð i¼1 0:5ixi Þ þ ð i¼1 0:5ixi Þ PD=4 2 f ðxÞ ¼ i¼1 ðx4i3 þ 10x4i2 Þ þ 5ðx4i1  x4i Þ2 þ ðx4i2  x4i1 Þ4 þ 10ðx4i3  x4i Þ4 P QD f ðxÞ ¼ D i¼1 jxi j þ i¼1 jxi j 2 PD Pi f ðxÞ ¼ i¼1 ð j¼1 xj Þ PD1 2 f ðxÞ ¼ i¼1 ½100ðxiþ1  x2i Þ þ ðxi  1Þ2  P 2 2 ið2x f ðxÞ ¼ ðx1  1Þ2 þ D i¼2 i  xi1 Þ f ðxÞ ¼ f ðxÞ ¼ 0:002 þ P25 j¼1 1 ðx aij Þ6 i¼1 i 1 P2 jþ  2   2 5 þ 10 1  81p coxðx1 Þ þ 10 f ðxÞ ¼ x2  45:1 p2 x1 þ p x1  6 f ðxÞ ¼ x21 þ 2x22  0:3 cosð3px1 Þ  0:4 cosð4px2 Þ þ 0:7 f ðxÞ ¼ x21 þ 2x22  0:3 cosð3px1 Þ cosð4px2 Þ þ 0:3 22 [100, 100] 2 MN Bohachevsky 3 23 [10, 10] 2 MS 24 [5.12, 5.12] 30 MS 25 [500, 500] 30 MS 26 [0, p] 27 28 29 [100, 100] 2 MN Schaffer 30 [5, 5] 2 MN Six Hump Camel f ðxÞ ¼ 4x21  2:1x41 þ 13 x61 þ x1 x2  4x22 þ 4x42 Back P P 2 MN Shubert f ðxÞ ¼ ð 5i¼1 i cosðði þ 1Þx1 þ iÞÞð 5i¼1 i cosðði þ 1Þx2 þ iÞÞ 2 MN Goldstein-Price f ðxÞ ¼ ½1 þ ðx1 þ x2 þ 1Þ2 ð19  14x1 þ 3x21  14x2 þ 6x1 x2 þ 3x22 Þ Booth Rastrigin Schwefel 2 MS Michalewicz 2 [0, p] 5 MS Michalewicz 5 [0, p] 10 MS Michalewicz 10 f ðxÞ ¼ x21 þ 2x22  0:3 cosð3px1 þ 4px2 Þ þ 0:3 f ðxÞ ¼ ðx1 þ 2x2  7Þ2 þ ð2x1 þ x2  5Þ2 P 2 f ðxÞ ¼ D i¼1 ½xi  10 cosð2pxi Þ þ 10 pffiffiffiffiffiffiffi P  xi sinð jxi jÞ f ðxÞ ¼ D i¼1 2m PD f ðxÞ ¼  i¼1 sinðxi Þðsinðix2i =pÞÞ ; m ¼ 10 PD 2m 2 f ðxÞ ¼  i¼1 sinðxi Þðsinðixi =pÞÞ ; m ¼ 10 PD 2m 2 f ðxÞ ¼  i¼1 sinðxi Þðsinðixi =pÞÞ ; m ¼ 10 pffiffiffiffiffiffiffiffiffiffi sin2 ð x21 þx22 Þ0:5 f ðxÞ ¼ 0:5 þ 2 2 2 ð1þ0:001ðx1 þx2 ÞÞ 31 [10, 10] 32 [2, 2] 33 [5, 5] 4 MN Kowalik 34 [0,10] 4 MN Shekel 5 35 [0,10] 4 MN Shekel 7 36 [0,10] 4 MN Shekel 10  ½30 þ ð2x1  3x2 Þ2 ð18  32x1 þ 12x21 þ 48x2  36x1 x2 þ 27x22 Þ 2 2 P x1 ðbi þbi x2 Þ f ðxÞ ¼ 11 i¼1 ðai  b2 þb x þx Þ 4 i 3 i P5 f ðxÞ ¼  i¼1 P4 1 2 j¼1 37 [D, D] 4 MN Perm 38 [0, D] 4 MN PowerSum 39 [0, 1] 3 MN Hartman 3 40 [0, 1] 6 MN Hartman 6 41 [600, 600] 30 MN Griewank 42 [32, 32] 30 MN Ackley f ðxÞ ¼  f ðxÞ ¼  P7 i¼1 P10 i¼1 P4 j¼1 P4 j¼1 ðxj aij Þ þci 1 ðxj aij Þ2 þci 1 ðxj aij Þ2 þci 2 PD PD k k k¼1 ½ i¼1 ði þ bÞððxi =iÞ  1Þ i2 PD h PD k f ðxÞ ¼ k¼1 ð i¼1 xi Þ  bk h P i P f ðxÞ ¼  4i¼1 ci exp  3j¼1 aij ðxj  pij Þ2 h i P P f ðxÞ ¼  4i¼1 ci exp  6j¼1 aij ðxj  pij Þ2 PD 2 QD xiffi 1 p f ðxÞ ¼ 4000 i¼1 xi  i¼1 cosð iÞ þ 1  qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  P  P D 2  exp 1 f ðxÞ ¼ 20 exp 0:2 D1 D i¼1 xi i¼1 cosð2pxi Þ þ 20 þ e D f ðxÞ ¼ (continued on next page) 210 M. Khalili et al. / Applied Mathematics and Computation 228 (2014) 195–219 Table 19 (continued) No. Range D 43 [50, 50] 30 MN Penalized C Function 44 [50, 50] 30 MN Penalized 2 45 [0, 10] 2 MN Langerman 2 46 [0,10] 5 MN Langerman 5 47 [0,10] 10 MN Langerman 10 Formulation n o P P 2 2 2 f ðxÞ ¼ Dp 10 sin2 ðpy1 Þ þ D1 þ D i¼1 ðyi  1Þ ½1 þ 10 sin ðpyiþ1 Þ þ ðyD  1Þ i¼1 uðxi ; 10; 100; 4Þ 8 m < kðxi  aÞ ; xi > a yi ¼ 1 þ 14 ðxi þ 1Þuðxi ; a; k; mÞ ¼ 0; a 6 xi 6 a : kðxi  aÞm ; xi < a n o P 2 2 2 2 2 f ðxÞ ¼ 0:1 sin2 ðpx1 Þ þ D1 i¼1 ðxi  1Þ ½1 þ sin ð3pxiþ1 Þ þ ðxD  1Þ ½1 þ sin ð2pxD Þ þ ðyD  1Þ P þ D i¼1 uðxi ; 5; 100; 4Þ     P  P5 P 2 2 f ðxÞ ¼  i¼1 ci exp  p1 D cos p D j¼1 ðxj  aij Þ j¼1 ðxj  aij Þ      P P P 2 2 f ðxÞ ¼  5i¼1 ci exp  p1 D cos p D j¼1 ðxj  aij Þ j¼1 ðxj  aij Þ     P  P P 2 2 f ðxÞ ¼  5i¼1 ci exp  p1 D cos p D j¼1 ðxj  aij Þ j¼1 ðxj  aij Þ So, the bandwidth is in the form of: bw ¼ bwmax  e  bw Lnbw min max   iteration1 Maximp 1   ð20Þ This is reduced to: bw ¼ bwmax  e   ðLnð0:001ÞÞ iteration1 Maximp 1  ð21Þ For pitch adjustment, a correction coefficient is proposed as:  iteration  1 coef ¼ ð1 þ ðHMS  jÞÞ  1  Maximp  1 ð22Þ Adjustment formula is: x0i ¼ xji  bw  coef ð23Þ x0i . In Eq. (22), j is the selected solution vector number, j  (1, . . ., HMS), related to The ‘‘coef’’ parameter makes smaller or larger bandwidths with respect to the quality of the selected value in the harmony memory and also state of the optimization (i.e. iteration number). The improvisation step of GDHS is shown in Fig. 4. 4. GDHS verifications tests In this section two experiments are executed to show the performance of the proposed algorithm. In the experiment A, 15 benchmark problems are selected based on GHS + LEM [9]. The values of responses of other algorithms are obtained from the [9], so as to compare in fair conditions, the initial values of GHS + LEM are used and the averages are obtain after 100 repetitions as in [9]. In the second experiment 47 benchmark functions are used based on Artificial Bee Colony [14] to test the performance of the proposed algorithm against other types of algorithms from different families. Since the response values of other algorithms are obtained from the so-called paper, the same initial and test conditions are used, so the algorithm results are repeated 30 times to meet that condition of the [14]. 4.1. Experiment A 4.1.1. Benchmark functions and parameter settings This section shows the performance of the proposed algorithm versus other recently developed modifications of HS algorithm. In order to compare the proposed algorithm with previous works, 15 test functions are selected based on GHS + LEM [9] which include unimodal/multimodal, separable/non-separable functions. The definition and characteristics of these test functions are gathered from [15–17]. Table 1 shows the parameters for each algorithm, while Table 2 represents the 15 benchmark test functions and their conditions. Except the bi-dimensional Six-Hump Camel-Back, all other test functions are multidimensional which are tested for 30 and 50 dimensions. All of the functions used for this experiment, have been tested with the maximum number of iterations (total function evaluation number) of 5000 and 50,000 and the harmony memory size (population size) is set at 5. The initial harmony memory is generated randomly within the ranges specified 211 M. Khalili et al. / Applied Mathematics and Computation 228 (2014) 195–219 Table 20 Results of the experiment B. D: dimension, Mean: mean of the best values, StdDev: standard deviation of the best values, SEM: standard error of means. No. D Function Min. 1 5 Stepint 0 2 30 Step 0 3 30 Sphere 0 4 30 SumSquares 0 5 30 Quartic 0 6 2 Beale 0 7 2 Easom 1 8 2 Matyas 0 9 4 Colville 0 10 6 Trid6 50 11 10 Trid10 210 12 10 Zakharov 0 13 24 Powell 0 14 30 Schwefel 2.22 0 15 30 Schwefel 1.2 0 16 30 Rosenbrock 0 17 30 Dixon-Price 0 18 2 Foxholes 0.998 19 2 Branin 0.398 20 2 Bohachevsky 1 0 21 2 Bohachevsky 2 0 22 2 Bohachevsky 3 0 Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM GA PSO DE ABC This study 0 0 0 1.17E+03 76.561450 13.978144 1.11E+03 74.214474 13.549647 1.48E+02 12.4092893 2.265616 0.1807 0.027116 0.004951 0 0 0 1 0 0 0 0 0 0.014938 0.007364 0.001344 49.9999 2.25E5 4.11E06 209.476 0.193417 0.035313 0.013355 0.004532 0.000827 9.703771 1.547983 0.282622 11.0214 1.386856 0.253204 7.40E+03 1.14E+03 208.1346 1.96E+05 3.85E+04 7029.10615 1.22E+03 2.66E+02 48.564733 0.998004 0 0 0.397887 0 0 0 0 0 0.06829 0.078216 0.014280 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00115659 0.000276 5.04E05 0 0 0 1 0 0 0 0 0 0 0 0 50 0 0 210 0 0 0 0 0 0.00011004 0.000160 2.92E05 0 0 0 0 0 0 15.088617 24.170196 4.412854 0.6666667 E8 1.8257E09 0.99800393 0 0 0.39788736 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0013633 0.000417 7.61E05 0 0 0 1 0 0 0 0 0 0.0409122 0.081979 0.014967 50 0 0 210 0 0 0 0 0 2.17E7 1.36E7 2.48E08 0 0 0 0 0 0 18.203938 5.036187 0.033333 0.6666667 E9 1.8257E10 0.9980039 0 0 0.3978874 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0300166 0.004866 0.000888 0 0 0 1 0 0 0 0 0 0.0929674 0.066277 0.012100 50 0 0 210 0 0 0.0002476 0.000183 3.34E05 0.0031344 0.000503 9.18E05 0 0 0 0 0 0 0.0887707 0.077390 0.014129 0 0 0 0.9980039 0 0 0.3978874 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0005617 0.0001018 1.86E05 0 0 0 1 0 0 0 0 0 3.9911E07 5.9499E07 1.0863E07 50 0 0 210 0 0 0 0 0 0.0014455 0.0002926 5.34E05 0 0 0 2.4498E06 2.8195E06 5.1477E07 31.5794810 23.273952 4.249223 0.6666667 1.79E9 3.27E10 0.9980039 0 0 0.3978874 0 0 0 0 0 0 0 0 0 0 0 (continued on next page) 212 M. Khalili et al. / Applied Mathematics and Computation 228 (2014) 195–219 Table 20 (continued) No. D Function Min. 23 2 Booth 0 24 30 Rastrigin 0 25 30 Schwefel 12569.5 26 2 Michalewicz 2 1.8013 27 5 Michalewicz 5 4.6877 28 10 Michalewicz 10 9.6602 29 2 Schaffer 0 30 2 Six Hump Camel Back 1.03163 31 2 Shubert 186.73 32 2 Goldstein-Price 3 33 4 Kowalik 0.00031 34 4 Shekel 5 10.15 35 4 Shekel 7 10.4 36 4 Shekel 10 10.53 37 4 Perm 0 38 4 PowerSum 0 39 3 Hartman 3 3.86 40 6 Hartman 6 3.32 41 30 Griewank 0 42 30 Ackley 0 43 30 Penalized 0 44 30 Penalized 2 0 45 2 Langerman 2 1.08 Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM Mean StdDev SEM GA PSO DE ABC This study 0 0 0 52.92259 4.564860 0.833426 11593.4 93.254240 17.025816 1.8013 0 0 4.64483 0.097850 0.017865 9.49683 0.141116 0.025764 0.004239 0.004763 0.000870 1.03163 0 0 186.731 0 0 5.250611 5.870093 1.071727 0.005615 0.008171 0.001492 5.66052 3.866737 0.705966 5.34409 3.517134 0.642138 3.82984 2.451956 0.447664 0.302671 0.193254 0.035286 0.010405 0.009077 0.001657 3.86278 0 0 3.29822 0.050130 0.009152 10.63346 1.161455 0.212052 14.67178 0.178141 0.032524 13.3772 1.448726 0.2645 125.0613 12.001204 2.191110 1.08094 0 0 0 0 0 43.9771369 11.728676 2.141353 6909.1359 457.957783 83.611269 1.5728692 0.119860 0.021883 2.4908728 0.256952 0.046913 4.0071803 0.502628 0.091767 0 0 0 1.0316285 0 0 186.73091 0 0 3 0 0 0.00049062 0.000366 6.68E05 2.0870079 1.178460 0.215156 1.9898713 1.420602 0.259365 1.8796753 0.432476 0.078959 0.03605158 0.048927 0.008933 11.3904479 7.355800 1.342979 3.6333523 0.116937 0.021350 1.8591298 0.439958 0.080325 0.01739118 0.020808 0.003799 0.16462236 0.493867 0.090167 0.0207338 0.041468 0.007571 0.00767535 0.016288 0.002974 0.679268 0.274621 0.050139 0 0 0 11.716728 2.538172 0.463405 10266 521.849292 95.276209 1.801303 0 0 4.683482 0.012529 0.002287 9.591151 0.064205 0.011722 0 0 0 1.031628 0 0 186.7309 0 0 3 0 0 0.0004266 0.000273 4.98E05 10.1532 0 0 10.40294 0 0 10.53641 0 0 0.0240069 0.046032 0.008404 0.0001425 0.000145 2.65E05 3.862782 0 0 3.226881 0.047557 0.008683 0.0014792 0.002958 0.000540 0 0 0 0 0 0 0.0021975 0.004395 0.000802 1.080938 0 0 0 0 0 0 0 0 12569.487 0 0 1.8013034 0 0 4.6876582 0 0 9.6601517 0 0 0 0 0 1.0316285 0 0 186.73091 0 0 3 0 0 0.0004266 6.04E5 1.10E05 10.1532 0 0 10.402941 0 0 10.53641 0 0 0.0411052 0.023056 0.004209 0.0029468 0.002289 0.000418 3.8627821 0 0 3.3219952 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0809384 0 0 0 0 0 0 0 0 12569.487 0 0 1.8013034 0 0 4.6876582 0 0 9.6601517 0 0 0 0 0 1.0316285 0 0 186.73091 0 0 3 0 0 0.0006651 2.17E5 3.97E6 9.3310072 2.132314 0.389305 10.402941 0 0 10.536410 0 0 0.0032908 0.002523 0.0004606 0.0002550 0.000272 4.97E05 3.8627821 0 0 3.2985268 0.0484976 0.008854 0 0 0 0 0 0 0 0 0 0 0 0 1.0809384 0 0 213 M. Khalili et al. / Applied Mathematics and Computation 228 (2014) 195–219 Table 20 (continued) No. D Function Min. 46 5 Langerman 5 1.5 47 10 Langerman 10 NA Mean StdDev SEM Mean StdDev SEM GA PSO DE ABC This study 0.96842 0.287548 0.052499 0.63644 0.374682 0.068407 0.5048579 0.213626 0.039003 0.0025656 0.003523 0.000643 1.499999 0 0 1.0528 0.302257 0.055184 0.938150 0.000208 3.80E05 0.4460925 0.133958 0.024457 0.9384233 0 0 0.8059999 0 0 for each function. Each of the algorithms was repeated 100 times on each of the test functions with different random seeds to be sure that reliable average mean values and deviations are obtained. 4.1.2. Results and discussion The mean average, standard deviation, and standard error of means of the results of this experiment are shown in the Tables 3–5. For simplicity in notification and calculations, the values smaller than 1012 are assumed to be zero. The bold Table 21 Significance test for GDHS and GA. t: t-value of student t-test, SED: standard error of difference, p: p-value calculated for t-value, R: rank of p-value, I.R.: inverse rank of p-value, Sign: significance. No Function t SED p R I.R. NEW a Sign. 42 2 3 4 24 25 44 43 41 14 5 15 13 16 17 10 12 36 11 9 37 35 28 38 29 21 34 33 47 27 32 46 40 1 6 7 8 18 19 20 22 23 26 30 31 39 45 Ackley Step Sphere SumSquares Rastrigin Schwefel Penalized 2 Penalized Griewank Schwefel 2.22 Quartic Schwefel 1.2 Powell Rosenbrock Dixon-Price Trid6 Zakharov Shekel 10 Trid10 Colville Perm Shekel 7 Michalewicz 10 PowerSum Schaffer Bohachevsky 2 Shekel 5 Kowalik Langerman 10 Michalewicz 5 Goldstein-Price Langerman 5 Hartman 6 Stepint Beale Easom Matyas Foxholes Branin Bohachevsky 1 Bohachevsky 3 Booth Michalewicz 2 Six Hump Camel Back Shubert Hartman 3 Langerman 2 451.107 83.7021 81.921 65.3244 63.5001 57.3298 57.0767 50.5754 50.1456 43.5277 36.3863 35.5539 34.3297 27.8796 25.1074 24.3432 16.1404 14.9813 14.8387 11.1103 8.4843 7.8781 6.3391 6.1219 4.8747 4.7821 4.5529 3.318 2.4787 2.3973 2.1 0.57138 0.0241 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 0.0325 13.9781 13.5496 2.2656 0.8334 17.0258 2.1911 0.2645 0.2121 0.2532 0.005 208.1346 0.28262 7029.1074 48.5647 0 0.0008 0.4477 0.035313 0.0013 0.0353 0.6421 0.0258 0.0017 0.0009 0.0143 0.80619 0.0015 0.0684 0.0179 1.0717 0.0525 0.0127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000009 0.000012 0.000028 0.001570 0.016116 0.019758 0.040089 0.569950 0.980856 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0.001064 0.001087 0.001111 0.001136 0.001163 0.001190 0.001220 0.001250 0.001282 0.001316 0.001351 0.001389 0.001429 0.001471 0.001515 0.001563 0.001613 0.001667 0.001724 0.001786 0.001852 0.001923 0.002000 0.002083 0.002174 0.002273 0.002381 0.002500 0.002632 0.002778 0.002941 0.003125 0.003333 0.003571 0.003846 0.004167 0.004545 0.005000 0.005556 0.006250 0.007143 0.008333 0.010000 0.012500 0.016667 0.025000 0.050000 GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS – – – – – – – – – – – – – – – – – – – 214 M. Khalili et al. / Applied Mathematics and Computation 228 (2014) 195–219 font in tables shows the best answers among all algorithms (i.e. the closest to the actual optimum of the function). The values for other methods in Tables 3–5 are extracted from GHS + LEM [9]. In order to analyze the results clearly and see whether there is any significant difference between the results of each algorithm, a t-test is performed on each pairs of algorithms. The p-values are then calculated for each function, but they are not used directly to be compared with a to determine the significance because as Bratton mentioned in [18], the probabilistic nature of optimization algorithms makes it possible that some results are dependent on chance, even random data generated from the same distribution will differ significantly sometimes. In order to handle this issue, the Modified Bonferroni Correction is proposed by Bratton [18]. In this method a number of t-tests are conducted, and p-values are calculated. The p-values are then ranked ascending (t-test values descending), and the new ranking is recorded. These ranks are then inverted, so that the highest p-value gets an inverse-rank of 1. Then, a (=0.05) is divided by the inverse rank for each observation, and the new a is obtained. If ‘‘p < New a’’, then there is a significant difference between algorithms on the specified function. These statistical tests are presented in Tables 6–17. Tables 6–9 present the results of the comparison between each pairs of the algorithms, for the case of 30 dimensions and 50,000 iterations, except for the Six-Hump Camel-Back which is defined in two dimensions. From the Tables 6 and 7, it is shown that GDHS outperforms both HS and IHS algorithms. Table 8 shows the comparison between GDHS and GHS. As it shows, there is no significant difference between the two algorithms on Step function, but on all other functions, GDHS gives the best results. Table 9 shows the comparison between GDHS and GHS + LEM algorithms. On 4 functions (Schwefel’s P. 1.2 Table 22 Significance test for GDHS and PSO. t: t-value of student t-test, SED: standard error of difference, p: p-value calculated for t-value, R: rank of p-value, I.R.: inverse rank of p-value, Sign: significance. No Function t SED p R I.R. NEW a Sign. 47 36 25 28 27 35 13 24 40 34 46 5 39 26 38 45 15 41 9 37 43 16 33 44 42 1 2 3 4 6 7 8 10 11 12 14 17 18 19 20 21 22 23 29 30 31 32 Langerman 10 Shekel 10 Schwefel Michalewicz 10 Michalewicz 5 Shekel 7 Powell Rastrigin Hartman 6 Shekel 5 Langerman 5 Quartic Hartman 3 Michalewicz 2 PowerSum Langerman 2 Schwefel 1.2 Griewank Colville Perm Penalized Rosenbrock Kowalik Penalized 2 Ackley Stepint Step Sphere SumSquares Beale Easom Matyas Trid6 Trid10 Zakharov Schwefel 2.22 Dixon-Price Foxholes Branin Bohachevsky 1 Bohachevsky 2 Bohachevsky 3 Booth Schaffer Six Hump Camel Back Shubert Goldstein-Price 1249.1033 109.6359 67.6984 61.6014 46.827 32.4372 21.9336 20.5371 17.8118 16.2858 11.1163 11.0762 10.7463 10.4387 8.4813 8.0112 4.759 4.5778 3.674 3.6626 2.7386 2.6919 2.6065 2.581 1.8257 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 0.0006 0.079 83.6113 0.0918 0.0469 0.25937 0 2.1414 0.0808 0.4448 0.039 0 0.0214 0.0219 1.343 0.0501 0 0.0038 0 0.0089 0.0076 6.1261 0 0.003 0.092 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000013 0.000025 0.000523 0.000542 0.008182 0.009270 0.011607 0.012403 0.073045 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0.001064 0.001087 0.001111 0.001136 0.001163 0.001190 0.001220 0.001250 0.001282 0.001316 0.001351 0.001389 0.001429 0.001471 0.001515 0.001563 0.001613 0.001667 0.001724 0.001786 0.001852 0.001923 0.002000 0.002083 0.002174 0.002273 0.002381 0.002500 0.002632 0.002778 0.002941 0.003125 0.003333 0.003571 0.003846 0.004167 0.004545 0.005000 0.005556 0.006250 0.007143 0.008333 0.010000 0.012500 0.016667 0.025000 0.050000 GDHS GDHS GDHS GDHS GDHS GDHS PSO GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS GDHS PSO GDHS PSO GDHS – – – – – – – – – – – – – – – – – – – – – – – – – – – 215 M. Khalili et al. / Applied Mathematics and Computation 228 (2014) 195–219 with noise, Generalized Schwefel’s P. 2.26, Six-Hump Camel Back and Step) there is no significant difference between the two algorithms. On 3 functions, GHS + LEM gives better results, while GDHS performs better on 8 functions. Tables 10–13 present the results of the comparison between each pairs of the algorithms, for the case of 50 dimensions and 50,000 iterations. From Tables 10–12, it is shown that GDHS outperforms HS, IHS and GHS algorithms. Table 13 shows the comparison between GDHS and GHS + LEM algorithms. On 3 functions, (Generalized Schwefel’s P. 2.26, Six-Hump Camel Back and Step), there is no significant different between the two algorithms. On 4 functions, GHS + LEM gives better results, while GDHS performs better on 8 functions. Tables 14–17 present the results of the comparison between each pairs of the algorithms, for the case of 30 dimensions and 5000 iterations. Table 14 shows the comparison between GDHS and HS. On all functions, GDHS gives the best results. Table 15 shows the comparison between GDHS and IHS. On the function of Six Hump Camel Back, there is no significant difference between the two algorithms. Among all other functions, GDHS gives the best results. Table 16 shows the comparison between GDHS and GHS. On 3 functions, GHS performs better while GDHS gives the best results on the other 12 functions. Table 17 shows the comparison between GDHS and GHS + LEM algorithms. On 2 functions, Griewank and Step, there are no significant difference between the two algorithms. On 6 functions, GHS + LEM gives better results, while GDHS performs better on 7 functions. Table 23 Significance test for GDHS and DE. t: t-value of student t-test, SED: standard error of difference, p: p-value calculated for t-value, R: rank of p-value, I.R.: inverse rank of p-value, Sign: significance. No Function t SED p R I.R. NEW a Sign. 46 13 24 25 5 28 40 33 15 47 16 41 44 9 37 34 38 27 1 2 3 4 6 7 8 10 11 12 14 17 18 19 20 21 22 23 26 29 30 31 32 35 36 39 42 43 45 Langerman 5 Powell Rastrigin Schwefel Quartic Michalewicz 10 Hartman 6 Kowalik Schwefel 1.2 Langerman 10 Rosenbrock Griewank Penalized 2 Colville Perm Shekel 5 PowerSum Michalewicz 5 Stepint Step Sphere SumSquares Beale Easom Matyas Trid6 Trid10 Zakharov Schwefel 2.22 Dixon-Price Foxholes Branin Bohachevsky 1 Bohachevsky 2 Bohachevsky 3 Booth Michalewicz 2 Schaffer Six Hump Camel Back Shubert Goldstein-Price Shekel 7 Shekel 10 Hartman 3 Ackley Penalized Langerman 2 30758768 27.0545 25.284 24.1769 10.2285 5.8863 5.7773 4.77 4.759 4.4723 3.0766 2.739 2.7386 2.7334 2.4613 2.1119 1.9991 1.8257 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 0 0 0.4634 95.2762 0 0.0117 0.0124 0 0 0.0552 4.3476 0.0005 0.0008 0.015 0.0084 0.3893 0 0.0023 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000013 0.000013 0.000037 0.003193 0.008173 0.008182 0.008297 0.016840 0.039013 0.050291 0.073045 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0.001064 0.001087 0.001111 0.001136 0.001163 0.001190 0.001220 0.001250 0.001282 0.001316 0.001351 0.001389 0.001429 0.001471 0.001515 0.001563 0.001613 0.001667 0.001724 0.001786 0.001852 0.001923 0.002000 0.002083 0.002174 0.002273 0.002381 0.002500 0.002632 0.002778 0.002941 0.003125 0.003333 0.003571 0.003846 0.004167 0.004545 0.005000 0.005556 0.006250 0.007143 0.008333 0.010000 0.012500 0.016667 0.025000 0.050000 DE DE GDHS GDHS GDHS GDHS GDHS DE DE DE – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 216 M. Khalili et al. / Applied Mathematics and Computation 228 (2014) 195–219 Comparing the Tables 3 and 4, and the statistical results of them, Tables 6–13, it can be concluded that with increasing the number of dimensions, while the number of iterations is kept constant, GDHS certainly outperforms the original HS, IHS and GHS algorithms. Between algorithms GDHS and GHS + LEM, increasing the number of dimensions, causes the GDHS to fail on the function of ‘‘Schwefel’s P. 1.2 with noise’’, which is a unimodal/non-separable function. Comparing the Tables 3 and 5, and the statistical results obtained from them, Tables 6–9 and 14–17, it can be concluded that with decreasing the number of iterations, while the number of dimensions is kept constant, GDHS certainly outperforms the original HS and IHS algorithms. Between GDHS and GHS, with decreasing iterations, GHS gives better result on 3 functions that are multimodal (separable and non-separable), while GDHS performs better on 12 functions. Between GDHS and GHS + LEM, with decreasing iterations, on the function of Six Hump Camel Back, GDHS performs better with lower iterations. On the other hand, decreasing the number of iterations causes the GDHS to fail on 4 functions (Generalized Schwefel’s P. 2.26, Rastrigin, Schwefel’s P. 1.2 with noise and Sum of different power), which are multimodal/unimodal kind of functions. Also GDHS outperforms GHS + LEM on 7 functions. Table 18 shows the runtime of each test function, for different cases, with the GDHS algorithm. The graphs of success rate of GDHS versus other algorithms in this experiment are shown in Figs. 5–7. Generally speaking, comparing the results will lead us to the point that although the GDHS algorithm does not give the best results on some ‘‘non-separable’’ functions, it performs the best on some other functions of this kind. This contradiction Table 24 Significance test for GDHS and ABC. t: t-value of student t-test, SED: standard error of difference, p: p-value calculated for t-value, R: rank of p-value, I.R.: inverse rank of p-value, Sign: significance. No Function t SED p R I.R. NEW a Sign. 17 5 33 13 47 37 9 16 12 46 38 15 40 34 1 2 3 4 6 7 8 10 11 14 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 35 36 39 41 42 43 44 45 Dixon-Price Quartic Kowalik Powell Langerman 10 Perm Colville Rosenbrock Zakharov Langerman 5 PowerSum Schwefel 1.2 Hartman 6 Shekel 5 Stepint Step Sphere SumSquares Beale Easom Matyas Trid6 Trid10 Schwefel 2.22 Foxholes Branin Bohachevsky 1 Bohachevsky 2 Bohachevsky 3 Booth Rastrigin Schwefel Michalewicz 2 Michalewicz 5 Michalewicz 10 Schaffer Six Hump Camel Back Shubert Goldstein-Price Shekel 7 Shekel 10 Hartman 3 Griewank Ackley Penalized Penalized 2 Langerman 2 2.04E+09 33.1475 20.354 15.8967 14.7158 8.93 7.6829 7.4109 7.4107 7.1968 6.3961 4.759 2.6505 2.1119 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 0 0.0009 0 0.0001 0.0245 0.0042 0.0121 4.2492 0 0 0.0004 0 0.0088 0.3893 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.000013 0.010343 0.039013 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0.001064 0.001087 0.001111 0.001136 0.001163 0.001190 0.001220 0.001250 0.001282 0.001316 0.001351 0.001389 0.001429 0.001471 0.001515 0.001563 0.001613 0.001667 0.001724 0.001786 0.001852 0.001923 0.002000 0.002083 0.002174 0.002273 0.002381 0.002500 0.002632 0.002778 0.002941 0.003125 0.003333 0.003571 0.003846 0.004167 0.004545 0.005000 0.005556 0.006250 0.007143 0.008333 0.010000 0.012500 0.016667 0.025000 0.050000 ABC GDHS ABC GDHS GDHS GDHS GDHS ABC GDHS GDHS GDHS ABC – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 217 M. Khalili et al. / Applied Mathematics and Computation 228 (2014) 195–219 in performance of GDHS on non-separable functions shows that it can be better if some parameters are changed in order to prepare more investigation and escape from the local optima. 4.2. Experiment B 4.2.1. Benchmark functions and parameter settings In this experiment 47 benchmark problems are selected based on [14] to test the performance of the proposed algorithm against other types of algorithms from different families. This set of test functions includes many problems such as unimodal, multimodal, separable, non-separable and multidimensional. The functions used in this experiment are: GA, PSO, Table 25 Runtime of each test function for experiment B, with GDHS algorithm. No. Range D C Function Time (second/run) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 [5.12, 5.12] [100, 100] [100, 100] [10, 10] [1.28, 1.28] [4.5, 4.5] [100, 100] [10, 10] [10, 10] [D2, D2] [D2, D2] [5, 10] [4, 5] [10, 10] [100, 100] [30, 30] [10, 10] [65.536, 65.536] [5, 10]  [0, 15] [100, 100] [100, 100] [100, 100] [10, 10] [5.12, 5.12] [500, 500] [0, p] [0, p] [0, p] [100, 100] [5, 5] [10, 10] [2, 2] [5, 5] [0, 10] [0, 10] [0, 10] [D, D] [0, D] [0, 1] [0, 1] [600, 600] [32, 32] [50, 50] [50, 50] [0, 10] [0, 10] [0, 10] 5 30 30 30 30 2 2 2 4 6 10 10 24 30 30 30 30 2 2 2 2 2 2 30 30 2 5 10 2 2 2 2 4 4 4 4 4 4 3 6 30 30 30 30 2 5 10 US US US US US UN UN UN UN UN UN UN UN UN UN UN UN MS MS MS MN MN MS MS MS MS MS MS MN MN MN MN MN MN MN MN MN MN MN MN MN MN MN MN MN MN MN Stepint Step Sphere SumSquares Quartic Beale Easom Matyas Colville Trid6 Trid10 Zakharov Powell Schwefel 2.22 Schwefel 1.2 Rosenbrock Dixon-Price Foxholes Branin Bohachevsky 1 Bohachevsky 2 Bohachevsky 3 Booth Rastrigin Schwefel Michalewicz 2 Michalewicz 5 Michalewicz 10 Schaffer Six Hump Camel Back Shubert Goldstein-Price Kowalik Shekel 5 Shekel 7 Shekel 10 Perm PowerSum Hartman 3 Hartman 6 Griewank Ackley Penalized Penalized 2 Langerman 2 Langerman 5 Langerman 10 24.773 36.484 37.554 35.601 38.775 32.973 32.560 32.206 24.209 25.425 27.009 27.421 34.336 35.661 41.004 35.501 35.468 32.040 32.521 32.550 32.541 32.459 32.701 36.383 38.769 34.253 26.579 28.763 34.225 32.970 33.328 32.469 24.934 25.515 26.581 27.543 29.023 28.480 24.974 26.264 38.621 37.999 37.856 36.765 35.953 27.183 28.679 System: windows 7 ultimate. CPU: Intel Ò Core™ 2 Duo, 2.66–2.67 GHz. RAM: 4G. Language: Matlab 7.12.0.635. Algorithm: Global Dynamic Harmony Search (GDHS). Harmony memory size (HMS) = 50. Number of improvisations = 500,000. D: dimension, C: characteristic, U: unimodal, M: multimodal, S: separable, N: non-separable. 218 M. Khalili et al. / Applied Mathematics and Computation 228 (2014) 195–219 DE and ABC, which all of them are used in the original form (i.e. no modification), as described in [14]. Test functions used for this experiment with their characteristics are listed in Table 19. These functions can be found in [14–16,19,20]. Like previous experiment, the initial harmony memory is generated randomly within the ranges specified for each function. Each of the algorithms was repeated 30 times on each of the test functions with different random seeds to be sure that reliable average mean values and deviations are obtained. In all of the functions used for this experiment, the maximum number of iterations (total function evaluation number) is set at 500,000 and the initial harmony memory size (population size) is set at 50. 4.2.2. Results and discussion The mean average, standard deviation, and standard error of means of the results of this experiment are shown in the Table 20. The values for the algorithms GA, PSO, DE and ABC are extracted from [14]. Again, for simplicity in notification and calculations, the values smaller than 1012 are supposed to be zero. The values with bold font in the table show the best answer among all algorithms (i.e. the closest to the actual optimum of the function). To compare the results in a proper manner, the same procedure of the previous experiment, t-test table, is used. The statistical test results of this experiment are presented in Tables 21–24. Table 21 shows the statistical results and comparison between GDHS and GA. As it is seen from the results, on 19 functions there are no significant differences between the two algorithms, while on the other 28 functions, GDHS outperforms GA. Table 22 presents the comparison between GDHS and PSO. On 27 functions there are no significant differences between the two algorithms. On 3 functions, Powell, Schwefel 1.2, Colville; PSO gives better results while GDHS outperforms PSO on 17 functions. Table 23 shows the comparison between GDHS and DE. As the table shows, in this case there are no significant differences between the two algorithms on 37 functions. On 5 functions DE performs better and GDHS performs better on the other 5 functions. Table 24 shows the comparison between GDHS and ABC algorithm. On 35 functions, there are no significant differences between the two algorithms. On four functions (Dixon-Price, Kowalik, Rosenbrock and Schwefel 1.2) ABC gives better results but GDHS performs better on 8 functions. From Tables 21–24, one can see that, for all algorithms, there is no significance on Stepint, Beale, Easom, Matyas, Foxholes, Branin, Bohachevsky1, Bohachevsky3, Booth, Six Hump Camel Back, Shubert, Goldstein-Price functions; although GA could not find the global optimum for Goldstein-Price function. Comparing the statistical results, Tables 21–24, it can be concluded that GDHS does not give the best results on some ‘‘Non-Separable’’ functions. The functions that GDHS is not the best algorithm on them are listed below with a brief description: Schwefel 1.2: Unimodal, non-separable, continuous, differentiable, scalable Powell: Unimodal, non-separable, continuous, differentiable, scalable Kowalik: Multimodal, non-separable; the global minimum is located very close to the local minima Rosenbrock: Unimodal, non-separable, continuous, differentiable, scalable; the global optimum lays inside a long, narrow, parabolic shaped flat valley  Dixon-Price: Unimodal, non-separable, continuous, differentiable, scalable  Langerman: Multimodal, non-separable, continuous, differentiable, scalable; the local minima are unevenly distributed  Colville: Multimodal, non-separable, continuous, differentiable, non-scalable     Although GDHS does not give the best results on the above functions, it can easily find the global optimum of the other non-separable functions: Beale, Easom, Matyas, Trid 6, Trid 10, Zakharov, Schwefel 2.22, Bohachevsky 2, Schaffer, Shekel 7, Shekel 10, Perm, Hartman 3, Griewank, Ackley, Penalized, Penalized 2, Langerman 2 (18 functions). Table 25 shows the run- 100% 90% 80% 70% 60% Others 50% GDHS 40% 30% 20% 10% 0% GDHS-GA GDHS-PSO GDHS-DE GDHS-ABC Fig. 8. Success rate of GDHS versus other algorithms in experiment B. M. Khalili et al. / Applied Mathematics and Computation 228 (2014) 195–219 219 time of each test function, for different cases, with the GDHS algorithm. The graph of success rate of GDHS versus other algorithms in this experiment is shown in Fig. 8. 7. Conclusions This paper presented a new modification of Harmony Search algorithm called GDHS. In the proposed algorithm all the key parameters was changed to dynamic mode to make them case independent. This modification allows the algorithm to perform efficiently in both unimodal and multimodal functions. In this work, two experiments were executed. In the first one, the proposed algorithm was compared with 4 other algorithms from the same family, including: original HS, IHS, GHS, GHS + LEM. The statistical results showed that the GDHS algorithm outperforms all its ancestors. In this experiment, it was shown that with increasing the number of dimensions, while the number of iterations is kept constant, GDHS outperforms the original HS, IHS, GHS and GHS + LEM. Also, from the statistical results, it can be concluded that with decreasing the number of iterations, while the number of dimensions is kept constant, GDHS performs better than or similar to that of these algorithms, considering the point that the proposed method uses less setting parameters than the others. In the second experiment, the GDHS algorithm was compared with 4 algorithms from different families, including: GA, PSO, DE and ABC, on a large set of unconstrained test functions. The results showed that the proposed algorithm performs better than or similar to these algorithms, knowing the issue that in the proposed algorithm most of the parameters are changing dynamically and there is only one parameter (harmony memory size) to be predefined. Changing the parameters dynamically helps in various problems that the user is not familiar with the nature of the problem and the dynamic mode helps to have the best investigation and convergence attributes. References [1] Z.W. Geem, J.H. Kim, G.V. Loganathan, A new heuristic optimization algorithm: harmony search, Simulation 76 (2) (2001) 60–68. [2] K.S. Lee, Z.W. Geem, A new structural optimization method based on the harmony search algorithm, Comput. Struct. 82 (9) (2004) 781–798. [3] J.H. Kim, Z.W. Geem, E.S. Kim, Parameter estimation of the nonlinear Muskingum model using harmony search, J. Am. Water Resour. Assoc. 37 (5) (2001) 1131–1138. [4] Z.W. Geem, J.-H. Kim, S.-H. Jeong, Cost efficient and practical design of water supply network using harmony search, Afr. J. Agric. Res. 6 (13) (2011) 3110–3116. [5] Z.Z.W. Geem, J.C.J. Williams, Harmony search and ecological optimization, Int. J. Energy Environ. 1 (2) (2007) 150–154. [6] Z.W. Geem, W.E. Roper, Various continuous harmony search algorithms for web-based hydrologic parameter optimisation, Int. J. Math. Model. Numer. Optim. 1 (3) (2010) 213–226. [7] M. Mahdavi, M. Fesanghary, E. Damangir, An improved harmony search algorithm for solving optimization problems, Appl. Math. Comput. 188 (2) (2007) 1567–1579. [8] M.G.H. Omran, M. Mahdavi, Global-best harmony search, Appl. Math. Comput. 198 (2) (2008) 643–656. [9] C. Cobos, D. Estupiñán, J. Pérez, GHS + LEM: global-best harmony search using learnable evolution models, Appl. Math. Comput. 218 (6) (2011) 2558– 2578. [10] K.S. Lee, Z.W. Geem, A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice, Comput. Meth. Appl. Mech. Eng. 194 (36–38) (2005) 3902–3933. [11] L. Zhang, Y. Xu, Y. Liu, An elite decision making harmony search algorithm for optimization problem, J. Appl. Math. 2012 (2012) 1–15. [12] R.S. Michalski, Learnable evolution model: evolutionary processes guided by machine learning, Mach. Learn. 38 (1) (2000) 9–40. [13] Z.W. Geem, K.-B. Sim, Parameter-setting-free harmony search algorithm, Appl. Math. Comput. 217 (8) (2010) 3881–3889. [14] D. Karaboga, B. Akay, A comparative study of artificial bee colony algorithm, Appl. Math. Comput. 214 (1) (2009) 108–132. [15] M. Molga, C. Smutnicki, Test functions for optimization needs. Available at: <www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf>, 2005. [16] P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.P. Chen, A. Auger, S. Tiwari, Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization, 2005. [17] X. Yao, Y. Liu, G. Lin, Evolutionary programming made faster, IEEE Trans. Evol. Comput. 3 (2) (1999) 82–102. [18] D. Bratton, J. Kennedy, Defining a standard for particle swarm optimization, in: Swarm Intelligence Symposium, 2007. SIS 2007, IEEE, 2007, pp. 120– 127. [19] M. Jamil, X.S. Yang, A literature survey of benchmark functions for global optimisation problems, Int. J. Math. Model. Numer. Optim. 4 (2) (2013) 150– 194. [20] J.J. Liang, B.Y. Qu, P.N. Suganthan, A.G. Hernández-Díaz, Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization, 2013.